Antimicrobial activity of peptide fractions from Mucuna pruriens against Escherichia coli and Listeria monocytogenes.

Authors

  • Alfredo Benjamín Fuentes-Ortiz Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, 97203. Mérida, Yucatán
  • Jorge Carlos Ruiz-Ruiz División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Mérida, Av. Tecnológico Km 4.5 S/N, C.P. 97118. Mérida, Yucatán
  • Maira Rubí Segura-Campos Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, 97203. Mérida, Yucatán

DOI:

https://doi.org/10.19230/jonnpr.1450

Keywords:

Mucuna pruriens, sequential hydrolysis, ultrafiltration, peptide fractions, antimicrobials

Abstract

In the present work, the inhibitory activity of bacterial growth of peptide fractions from the legume Mucuna pruriens obtained by sequential enzymatic hydrolysis of the protein concentrate of its grains was evaluated. Dry grains of Mucuna pruriens obtained in the Yucatán state from the 2015 crop were used. To obtain the concentrate, a wet fractionation of the components of the grain flour was carried out and subsequently hydrolyzed by two sequential enzymatic systems, Alcalase®-Flavourzyme® and Pepsin- Pancreatin. To obtain the peptide fractions an ultrafiltration process was performed using membranes with different molecular weight cut: 10, 5, 3 and 1 kDa. The degree of hydrolysis was 25.34 and 47.28%, for Alcalase®- Flavourzyme® and Pepsin-Pancreatin systems, respectively. The protein content of the peptide fractions ranged from 0.114-1.018 mg/mL for Alcalase®-Flavourzyme® and from 0.175-1.014 mg/mL for Pepsin-Pancreatin. The molecular weight of the peptide fractions was verified by SDS-PAGE denaturing electrophoresis and compared against commercial molecular markers. The strains evaluated were Escherichia coli O157: H7 and Listeria monocytogenes ATCC 19115. Antibiograms were performed on each microorganism to determine the sensitivity to known antibiotics. Disk diffusion tests were negative for the peptide fractions of both enzyme systems.

 

Downloads

Download data is not yet available.

References

Garba S, Salihu L, Ahmed MU. Antioxidant and antimicrobial activities of Waltheria indica and Mucuna pruriens. J Pharm Sci Innovation. 2012; 1(5):5-8.

Yerra R, Gupta M, Mazumder UK. In vitro lipid peroxidation and antimicrobial activity of Mucuna pruriens seeds. Iran J Pharmacol Ther. 2005; 4:32-35.

Vikran PN, Roopchandani K, Gupta A, Kshitij A, Choudhary R. In vitro antimicrobial activity of benzene and chloroform extract of Mucuna pruriens. J Pharmacogn Phytochem. 2013; 5:19-23.

Segura MR, Espadas CP, Chel L, Betancur D. ACE-I inhibitory peptide fractions from enzymatic hydrolysates of velvet bean (Mucuna pruriens). Agric Sci. 2013; 4(12):767-773.

Shree MS, Kumar BS. Antifungal and anthelmintic activity of extracts of Mucuna pruriens seeds. Int J Clin Pharmacol Ther Toxicol. 2011; 1:4.

Herrera FG, Ruiz JC, Acevedo JJ, Betancur D, Segura MR. ACE inhibitory, hypotensive and antioxidant peptide fractions from Mucuna pruriens proteins. Process Biochem. 2014,; 49(10):1691-1698.

Pedroche J, Yust M, Girón N, Alaiz M, Millán F, Vioque J. Utilisation of chickpea protein isolates for production of peptides with angiotensin I- Converting enzyme (ACE)-inhibitory activity. J Sci Food Agric. 2002; 82:960-965.

Nielsen P, Petersen D, Dammann C. Improved method for determine food protein degree of hydrolysis. J Food Sci. 2001; 66:642-648.

Cho MJ, Unklesbay N, Hsieh F, Clarke AD. Hydrophobicity of bitter peptides from soy protein hydrolisates. J Agric Food Chem. 2004; 52:5895-5901.

Lowry O, Rosebrough NJ, Farr L, Randall R. Protein measurement with the Folin phenol reagent. J. Biol Chem. 1951; 193:267-275.

CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. CLSI document M100-S24. Wayne, PA: CLSI. 2014; 50-52.

Method for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Proposed Guideline. M45-P CLSI. 2005; 25-27.

Park P, Jung W, Nam K, Shahidi F, Kim S. Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk. J Amer Oil Chem Soc. 2001; 78(6):651-656.

Adebowalea KO, Lawalb OS. Foaming, gelation and electrophoretic characteristics of Mucuna bean (Mucuna pruriens) protein concentrates. Food Chem. 2003; 83:237-246.

Machuka J. Characterisation of the seed proteins of velvet bean (Mucuna pruriens) from Nigeria. Food Chem, 2000; 68:421-427.

Nicolas, P. Multifunctional hosto defense peptides: Intracellular- targeting antimicrobial peptides. FEBS J. 2009; 275:6483-6496.

Zeitler B, Herrera-Diaz A, Dangel A, Thellmann M, Meyer H, Sattler M, Lindermayr C. De-Novo design of antimicrobial peptides for plant protection. PloS One. 2013; 8:71-87.

Chadha, P, Das HA. Pathogenesis related protein, AhPR10 from peanut: An insight of its mode of antifungal activity. Planta. 2006; 225:213-222.

Published

2017-04-24