Cronodisrupción y desequilibrio entre cortisol y melatonina ¿Una antesala probable de las patologías crónicas degenerativas más prevalentes?

Autores/as

  • Cristina Simón Martín Departamento de Nutrición y Bromatología I (Nutrición). Facultad de Farmacia. Universidad Complutense de Madrid
  • Francisco J Sánchez-Muniz Departamento de Nutrición y Bromatología I (Nutrición). Facultad de Farmacia. Universidad Complutense de Madrid

DOI:

https://doi.org/10.19230/jonnpr.1918

Palabras clave:

Cortisol, Cronobiología, Cronodisrupción, Enfermedades crónicas, Melatonina, Ritmos circadianos

Resumen

En la gran mayoría de seres vivos se han demostrados variaciones fisiológicas, denominadas ritmos  circadianos, que tiene lugar aproximadamente cada 24 horas. Su estudio, así como el de los procesos de  sincronización con el medio que los rodea recibe el nombre de Cronobiología. En el ser humano el  sistema circadiano se encuentra formado por estructuras bien diferenciadas encargadas de generar  estos ritmos y de su sincronización con el medio, componiéndose principalmente por vías de entrada,  relojes (central y periféricos, situados, respectivamente, en el núcleo supraquiasmático y en diversos  órganos) y vías de salida. Mediante oscilaciones de 24 horas se modula la expresión de determinados  genes denominados genes “reloj” o genes Clock. No obstante, pueden producirse alteraciones en el  sistema circadiano llegando a provocar una perturbación del orden temporal interno respecto al del  orden externo, que se conoce como cronodisrupción. Los ciudadanos de las sociedades modernas viven  en ambientes muy cronodisruptivos caracterizados por estrés elevado y continuo, iluminación débil  estable, termostatización constante y uniforme, tiempo de sueño irregular, baja actividad física y  frecuentes comidas o picoteo constante. En este trabajo se expondrán de forma resumida la probable  relación de las alteraciones de dos hormonas –melatonina y cortisol- con la cronodisrupción y con el  riesgo incrementado de sufrir algunas de las enfermedades degenerativas más prevalentes:  envejecimiento prematuro, cáncer, enfermedad cardiovascular y obesidad. Se sugieren pautas de  estudios futuros para conocer los factores (p.ej. genéticos, epigenéticos) implicados en la cronodisrupción y su implicación en la génesis y/o empeoramiento de enfermedades degenerativas ya  presentes en el individuo, así como conocer que factores hacen más susceptibles a unos individuos  que a otros. Se incide que hacen falta más estudios prospectivos para conocer la fiabilidad de esa  posible relación. Por último, dado que otros ritmos (circalunares, periestacionales) parecen afectar al  sueño y a ciertas actividades de los seres humanos, se señala la importancia de desarrollar estudios  relacionados.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Terzibasi-Tozzini E, Martínez-Nicolas A, Lucas-Sánchez A. The clock is ticking. Ageing of the circadian system: From physiology to cell cycle. Semin Cell Dev Biol 2017; 70: 164-176.

Garaulet Aza M. La cronobiología, la alimentación y la salud. Nutrición y Salud. 2015; 27(8): 101-121.

Sánchez-Muniz FJ, Culebras JM, Vacas LV. In the month of the Nobel Prize Awards, we pay tribute to Alfred Nobel and to the recipients of the 2017 Prize in Medicine [En el mes de la concesión de los Premios Nobel, rendimos homenaje a Alfred Nobel y a los galardonados con el Premio de Medicina de 2017]. JONNPR 2017; 2(11):577-580. DOI: 10.19230/jonnpr.1891.

Madrid JA, Rol MA. Ritmos, relojes y relojeros. Una introducción a la cronobiología. Rev Eubact 2015; 33: 1-7.

Sánchez Muniz FJ, Simón Martín C. Clock Genes, chronodisruption, nutrition and obesity. Curr Res Diabetes Obes J 2017; 3(2): CRDOJ.MS.ID.555607.

Aguilar-Roblero R, Guadarrama P, Mercado C, Chávez JL. El núcleo supraquiasmático y la glándula pineal en la regulación de los ritmos circadianos en roedores. Departamento de Neurociencias, Instituto de Fisiología Celular. Universidad Nacional Autónoma de México, 2004.

Gómez-Abellán P, Madrid JA, Ordovás JM, Garaulet M. Aspectos cronobiológicos de la obesidad y el síndrome metabólico. Endocrinol Nutr. 2012; 59(1): 50-61.

Mirick DK, Bhatti P, Chen C, Nordt F, Stanczyk FZ, Davis S. Night shift work and levels of 6-sulfatoxymelatonin and cortisol in men. Cancer Epidemiol Biomarkers Prev 2013; 22(6): 1079-1087.

Golombek DA. El ciclo sueño-vigilia. Cronobiología humana. Buenos Aires: Editorial Universidad de Quilmes, 2002.

Erren TC, Reiter RJ. Defining chronodisruption. J Pineal Res 2009; 46: 245-247.

Rosmond R, Dallman MF, Björntorp P. Stress-related cortisol secretion in men: Relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab 1998; 83: 1853–1859.

Davis S, Mirick DK. Circadian disruption, shift work and the risk of cancer: a summary of the evidence and studies in Seattle. Cancer Causes Control 2006; 17(4): 539-545.

Garaulet M, Madrid JA. Chronobiology: influences on metabolic syndrome and cardiovascular risk. Curr Cardiovasc Risk Rep 2010; 4(1): 15-23.

Gronfier C, Wright KP, Kronauer RE, Czeisler CA. Entrainment of the human Circadian pacemarker to longerthan-24-h days. Proc. Natl. Acad. Sci. U.S.A. 2007; 104(21): 9081-9086.

Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27.485 people. Occup Environ Med 2001; 58(11): 747–752.

Middleton B, Stone BM, Arendt J. Human circadian phase in 12:12 h, 200: <8 lux and 1000: <8 lux light dark cycles, without scheduled sleep or activity. Neurosci Lett 2002; 329(1): 41–44.

Pauley SM. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Med Hypotheses 2004; 63(4): 588–596.

Rodrigues Menezes MC, Nogueira Pires ML, Benedito-Silva AA, Tufik S. Sleep parameters among offshore workers: an initial assessment in the Campos Basin Rio de Janeiro, Brazil. Chronobiol Int 2004; 21(6): 889– 897.

Schernhammer ES, Laden F, Speizer FE, Willet WC, Hunter DJ, Kawachi I, et al. Night-shift work and risk of colorectal cancer in the nurses´ health studies, J Natl Cancer Inst 2003; 95(11): 825–828.

Pascual-Leone Pascual AM, Goya Suárez L. Metabolic syndrome and perinatal development: corticoadrenal alterations. En: Perinatal development: origin of adult pathologies. Pascual-Leone AM, Medina JM (eds.) Madrid: Fundación Ramón Areces, Instituto de España, Real Academia Nacional de Farmacia, 2008; 27–76.

Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmeer W, et al. Stability, precision, and neart-24-hour period of the human circadian pacemarker. Science 1999; 284 (5423): 2177-2181.

Gesteiro Alejos E, Sánchez-Muniz FJ, Bastida S. Hypercortisolaemia and hyperinsulinaemia interaction and their impact upon insulin resistance/sensitivity markers at birth. En: Umbilical cord blood banking for clinical application and regenerative medicine. Mauricio AM (ed.) InTech. Rijeka, Croatia 2017; pp. 70-98. http://dx.doi.org/10.57782/64946.

Pascual-Leone Pascual AM. Brain effects of steroids: present knowledge of the stress response and its implication in behaviour. In: Pascual-Leone AM, Medina JM, eds. Brain effects of hormones. Madrid: Fundación Ramón Areces, Instituto de España, Real Academia Nacional de Farmacia. 2010; 33-85.

Sterling P, Eyer J. Allostasis: a new paradigm to explain arousal pathology. En: Handbook of life stress, cognition and health. Fisher S, Reason J (eds.) Wiley. New York. 1998, pp. 629-649.

Van de Werken M, Booji SH, Van der Zwan E, Simons MJP, Gordijn MCM, Beersma GM. The biological clock modulates the human cortisol response in a multiplicative fashion. Chronobiol Int 2014; 31(4): 572- 580.

Garaulet M, Ordovás JM, Madrid JA. The chronobiology, etiology and pathophysiology of obesity. Int J Obes (Lond) 2010; 34(12): 1667-1683.

Touitou Y, Selmaoui B. The effects of extremely low-frequency magnetic fields on melatonin and cortisol, two marker rhythms of the circadian system. Dialogues Clin Neurosci 2012; 14(4): 381-399.

Wurtman RJ, Axelrod J. The pineal gland. Sci Am 1965; 213: 50-60.

Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 2010; 13: 1338–1344.

Mu Y, Lee SW, Gage FH. Signaling in adult neurogenesis. Curr Opin Neurobiol 2010; 20(4): 416–423.

Ninkovic J, Götz M. Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Curr Opin Neurobiol 2007; 17(3): 338–344.

Sun J, Sun J, Ming GL, Song H. Epigenetic regulation of neurogenesis in the adult mammalian brain. Eur J Neurosci 2011; 33(6): 1087–1093.

Bouchard-Cannon P, Mendoza-Viveros L, Yuen A, Kærn M, Cheng HY. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit. Cell Rep 2013; 5(4): 961–973.

Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 2013; 153(6): 1219–1227.

Pekcec A, Baumgärtner W, Bankstahl JP, Stein VM, Potschka H. Effect of aging on neurogenesis in the canine brain. Aging Cell 2008; 7(3): 368– 374.

Ben Abdallah NM, Slomianka L, Vyssotski AL, Lipp HP. Early age- related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging 2010; 31(1): 151–161.

Ziebell F, Martin-Villalba A, Marciniak-Czochra A. Mathematical modelling of adult hippocampal neurogenesis: effects of altered stem cell dynamics on cell counts and bromodeoxyuridine-labelled cells. J R Soc Interface 2014; 11(94): 20140144.

Kempermann G. Adult neurogenesis 2. Oxford University press. 2011.

Turner PL, Mainster MA. Circadian photoreception: ageing and the eye ´s important role in systemic health. Br J Ophthalmol 2008; 92(11): 1439–1444.

Tsukahara S, Tanaka S, Ishida K, Hoshi N, Kitagawa H. Age-related change and its sex differences in histoarchitecture of the hypothalamic suprachiasmatic nucleus of F344/N rats. Exp Gerontol 2005; 40(3): 147–155.

Bertini G, Colavito V, Tognoli C, Seke Etet PF, Bentivoglio M. The aging brain: neuroinflamatory signaling and sleep-wake regulation. Ital J Anal. Embryol 2010; 115(1-2): 31–38.

Nygard M, Hill RH, Wikstrom MA, Kristensson K. Age-related changes in electrophysiological properties of the mouse suprachiasmatic nucleus in vitro. Brain Res Bull 2005; 65(2): 149–154.

Nakamura TJ, Nakamura W, Yamazaki S, Kudo T, Cutler T, Colwell CS, et al. Age-related decline in circadian output. J Neurosci 2011; 31(28): 10201–10205.

Wu YH, Swaab DF. Disturbance and strategies for reactivation of the circadian system in aging and Alzheimer´s disease. Sleep Med 2007; 8(6): 623–636.

Nakamura TJ, Nakamura W, Tokuda IT, Ishikawa T, Kudo T, Colwell CS, et al. Age-related changes in the circadian system unmasked by constant conditions. eNeuro 2015; 2(4): e0064-15.2015 1-10.

Parent M, El-Zein M. Night work and the risk of cancer among men. Am J Epidemiol 2012; 176(9): 751-759.

Viswanathan AN, Hankinson SE, Schernhammer ES. Night shift work and the risk of endometrial cancer. Cancer Res 2007; 67(21): 10618– 10622.

Blask DE, Sauder LA, Dauchy RT. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of actin and their implications for circadian-based cancer therapy. Curr Top Med Chem 2002; 2(2) 113-132.

Munck A, Naray-Fejes-Toth A. Glucocorticoid action. en: DeGroot L. (ed.). Endocrinology. 3rd. DeGroot L. (ed.). Philadelphia: W.B. Saunders Co. 1995; pp. 1642-1654.

Rosmond R, Bjorntorp P. The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J Intern Med 2000; 247(2): 188–197.

DeSantis AS, DiezRoux AV, Hajat A, Aiello AE, Golden SH, Jenny NS, et al. Associations of salivary cortisol levels with inflammatory markers: the Multi-Ethnic Study of Atherosclerosis. Psychoneuroendocrinology 2012; 37(7): 1009–1018.

Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860–867.

Girod JP, Brotman DJ. Does altered glucocorticoid homeostasis increase cardiovascular risk? Cardiovasc Res. 2004; 64(2): 217-226.

Rainey WE, Rodgers RJ, Mason JI. The role of bovine lipoproteins in the regulation of steroidogenesis and HMGCoA reductase in bovine adrenocortical cells. Steroids 1992; 57(4): 167-173.

Brindley DN. Role of glucocorticoids and fatty acids in the impairment of lipid metabolism observed in the metabolic syndrome. Int J Obes Relat Metab Disord 1995; 19(Suppl. 1): S69-75.

Sánchez-Muniz FJ. Theory, evidence, fraud and scientific rigor. A brief reflection [Teorías, evidencias, fraude y rigor científico. Una breve reflexión]. JONNPR 2017; 2(10): 431-434.

Strait K, Baan R, Grose Y et al. On behalf of the WHO Internatyional Agency for Research on Cancer Monograph Working Group. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol 2007; 8: 1065-1067.

Valenzuela FJ, Vera J, Venegas C, Muñoz S, Oyarce S, Muñoz K, et al. Evidences of polymorphism associated with circadian system and risk of pathologies: a review of the literature. Int J Endocrinol 2016; 2016:2746909. doi: 10.1155/2016/2746909.

García-Quismondo A. Obesos “metabólicamente sanos” vs. obesos “metabólicamente enfermos”. En: IV Curso avanzado sobre obesidad y síndrome metabólico. Sánchez-Muniz FJ. (Coordinador). Monografía Real Academia Nacional de Farmacia. Instituto de España. En prensa.

Serranos-Ríos M, Cascales Angosto M, Martínez Larrad MT. La epidemia de obesidad. The obesity pandemic. The pathophysiological links: endocrine adipose cell dysfunction, inflammation and insulin resistance [El vínculo fisiopatológico: disfunción endocrina en el adipocito, inflamación y resistencia a la insulina]. An Real Acad Farm 2016; 82 (Special Issue): 182-194.

Sánchez-Muniz FJ. Obesity: a seriuos public health problem [La obesidad un grave problema de Salud Pública]. An Real Acad Farm 2016; 82 (Special Issue): 6-26.

Cuervo M, Goñi L, Martínez JA. Nutrición de precisión en el tratamiento de la obesidad y el síndrome metabólico. En: IV Curso avanzado sobre obesidad y síndrome metabólico. Sánchez-Muniz FJ. (Coordinador). Monografía Real Academia Nacional de Farmacia. Instituto de España. En prensa.

Corella D, Coltell O, Ordovás JM. Genetics and epigenetics of obesity [Genética y epigenética de la obesidad]. An Real Acad Farm 2016; 82 (Special Issue): 129-136.

Corella D, Asensio EM, Coltell O, Sorlí JV, Estruch R, Martínez- González MÁ, Salas-Salvadó J, Castañer O, Arós F, Lapetra J, et al. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial. Cardiovasc Diabetol. 2016; 15:4. doi: 10.1186/s12933-015-0327-8.

González-Muniesa P, Mártinez-González MA, Hu FB, Després JP, Matsuzawa Y, et al. Obesity. Nat Rev Dis Primers. 2017; 3:17034. doi: 10.1038/nrdp.2017.34.

Pierre K, Schlesinger N, Androulakis IP. The hepato-hypothalamic- pituitary-adrenal-renal axis: Mathematical modeling of cortisol's production, metabolism, and seasonal variation. J Biol Rhythms 2017; 748730417729929. doi: 10.1177/0748730417729929.

Raible F, Takekata H, Tessmar-Raible K. An overview of monthly rhythms and clocks. Front Neurol 2017; 8:189. doi: 10.3389/fneur.2017.00189. eCollection 2017.

Publicado

2017-10-23