Efecto de la recuperación nutricia en la concentración sérica de lipoperoxidos en niños con desnutrición proteínico-energética primaria grave.

Autores/as

  • Edgar Vasquez Garibay Instituto de Nutrición Humana, Hospital Civil de Guadalajara, Universidad de Guadalajara, México.
  • Katja Stein Instituto de Nutrición Humana, Hospital Civil de Guadalajara, Universidad de Guadalajara, México.
  • Piedad del Carmen Gómez Contreras Centro de Investigaciones Biomédicas, CMNO, IMSS, México.
  • Enrique Romero- Velarde Instituto de Nutrición Humana, Hospital Civil de Guadalajara, Universidad de Guadalajara, México.
  • Georgina Hernández-Flores Centro de Investigaciones Biomédicas, CMNO, IMSS, México
  • Alejandro Bravo Cuellar Centro de Investigaciones Biomédicas, CMNO, IMSS, México.

DOI:

https://doi.org/10.19230/jonnpr.2016.1.4.1048

Palabras clave:

Desnutrición grave, lipoperoxidos, recuperación nutricia

Resumen

Objetivo. El propósito es mostrar la tendencia de la concentración sérica de lipoperoxidos durante un período de cuatro semanas de recuperación nutricia en niños con desnutrición proteínico-energética primaria grave (DPE).
Métodos. En un estudio de intervención se incluyeron 12 niños desnutridos graves (tres a 48 meses de edad). Variable dependiente: Concentración de lipoperoxidos en suero (LPO) (nmol/mL). Variables independientes: fórmula sin lactosa para lactantes (200 kcal/kg/d y las proteínas 4 g/kg/d). Edad, sexo, se estimaron los índices peso/edad, longitud/edad, peso/longitud y se expresaron como puntaje Z. Se utilizaron las pruebas ANOVA, pruebas de mediciones repetidas y U Mann Whitney. La hipótesis nula fue rechazada con un valor de p

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Edgar Vasquez Garibay, Instituto de Nutrición Humana, Hospital Civil de Guadalajara, Universidad de Guadalajara, México.

Director, Instituto de Nutrición Humana, Universidad de Guadalajara

Jefe, Unidad de Estudios de Nutrición Infantil, Hospital Civil de Guadalajara Dr. Juan I. Menchaca

Citas

Augusto RL, Isaac AR, Silva-Júnior II, Santana DF, Ferreira DJ, Lagranha CJ, et al. Fighting Oxidative Stress:

Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-

Deficient Diet. Cerebellum. 2016 Mar 22. [Epub ahead of print]. DOI:10.1007/s12311-016-0773-1

Bonatto F, Polydoro M, Andrades MÉ, Júnior MLCDF, Dal-Pizzol F, Rotta LN, et al. Effects of maternal protein

malnutrition on oxidative markers in the young rat cortex and cerebellum. Neurosci Lett. 2006; 406:281–4.

Hazell AS, Faim S, Wertheimer G, Silva VR, Marques CS. The impact of oxidative stress in thiamine deficiency: a

multifactorial targeting issue. Neurochem Int. 2013; 62:796–802

Feoli AM, Siqueira IR, Almeida L, Tramontina AC, Vanzella C, Sbaraini S, et al. Effects of protein malnutrition on

oxidative status in rat brain. Nutrition. 2006; 22:160–5.

Kuhnt K, Wagner A, Kraft J, Basu S, Jahreis G. Dietary supplementation with 11trans- and 12trans- 18:1 and

oxidative stress in humans. Am J Clin Nutr 2006; 84: 891-898.

Tatli M, Guzel A, Kizil G, Kavak V, Yavuz M, Kizil M. Comparison of the effects of maternal protein malnutrition

and intrauterine growth restriction on redox state of central nervous system in offspring rats. Brain Res. 2007;

:21–30.

Ramdath DD, Golden MH 1993 Elevated glutathione S-Transferase activity in erythrocytes from malnourished

children. Eur J Clin Nutr. 1993; 47: 658-665.

Fechner A, Bohme C, Gromer S, Funk M, Schirmer R, Becker K. Antioxidant status and nitric oxide in the

malnutrition syndrome kwashiorkor. Pediatr Res 2001; 49: 237-43.

Biolo G, Antonione R, De Cicco M. Glutathione metabolism in sepsis. Crit Care Med 2007; 35: S591-S595.

Becker K, Pons-Kuhnemann J, Fechner A, Funk M, Gromer S, Gross HJ, Grünert A, Schirmer RH. Effects of

antioxidants on glutathione levels and clinical recovery from the malnutrition syndrome kwashiorkor--a pilot study.

Redox Rep 2005; 10: 215-26.

Squali-Houssaini FZ, Arnaud J, Richard MJ, Renversez JC, Favier A. Evaluation of oxidative stress and

antioxidant defenses in malnourished Moroccan children. Ann Nutr Metab 1997; 41: 149-59.

Squali Houssaini FZ, Foulon T, Payen N, Iraqi MR, Arnaud J, Groslambert P. Plasma fatty acid status in

Moroccan children: Increased lipid per-oxidation and impaired polyunsaturated fatty acid metabolism in proteincalorie

malnutrition. Biomed Pharmacother 2001; 55: 155-62.

Mortensen A, Hasselholt S, Tveden-Nyborg P, Lykkesfeldt J. Guinea pig ascorbate status predicts

tetrahydrobiopterin plasma concentration and oxidation ratio in vivo. Nutr Res. 2013; 33:859-67.

Mayne ST. Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status

in epidemiologic research. J Nutr 2003; 133: 933S-940S.

Khaled MA, Kabir MD, Mahalanabi D. Effect of protein energy supplementation on oxidative stress in

malnourished children. Nutr Res 1995; 15: 1099-1104.

Sharda B. Free radicals: emerging challenge in environmental health research in childhood and neonatal

disorders. Int J Environ Res Public Health 2006; 3: 286-91

Sive AA, Subotzky EF, Malan H, Dempster WS, Heese HD. Red blood cell antioxidant enzyme concentrations in

kwashiorkor and marasmus. Ann Trop Paediatr 1993; 13: 33-38.

Thomas JA. Oxidant defense in oxidative and nitrosative stress. In: Shils ME, Shike Ross AC, Caballero B,

Cousins RJ. Modern Nutrition n in Health and Disease. 10th Ed. Lippincott Williams & Wilkins, Philadelphia, PA,

, pp. 685-694.

Tatli MM, Vural H, Koc A, Kosecik M, Atas A. Altered antioxidant status and increased lipid peroxidation in

marasmic children. Pediatr Int 2000; 42: 289-92.

Partadiredja G, Worrall S, Simpson R, Bedi KS. Pre-weaning undernutrition alters the expression levels of

reactive oxygen species enzymes but not their activity levels or lipid peroxidation in the rat brain. Brain Res.

; 1222:69–78.

Akkus I, Saglam NI, Caglayan O, Vural H, Kalak S, Sa

peroxidation and antioxidant defense systems of patients with coronary artery disease (CAD) documented by

angiography. Clin Chim Acta 1996; 244: 173-80

Golden MHN, Ramdath DC. Free radical in the pathogenesis of kwashiorkor. Proc Nutr Soc 1987; 46: 53-86.

Munday R, Winterbourn CC. Reduced glutathione in combination with superoxide dismutase as an important

biological antioxidant defense mechanism. Biochem Pharmacol 1989; 38: 4349-4365.

Jahoor F, Badaloo A, Reid M, Forrester T. Protein metabolism in severe childhood malnutrition. Ann Trop

Paediatr 2008; 28: 87-101.

Lenhartz H, Ndasi R, Anninos A, Bötticher D, Mayatepek E, Tetanye E, Leichsenring M. The clinical manifestation

of the kwashiorkor syndrome is related to increased lipid per-oxidation. J Pediatr 1998; 132: 879-81.

Hu FB, Manson JE, Willett WC. Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll

Nutr 2001; 20: 5-19

Mozaffarian D, Pischon T, Hankinson SE, Rifai N, Joshipura K, Willett WC, Rimm EB. Dietary intake of trans fatty

acids and systematic inflammation in women. Am J Clin Nutr 2004; 79: 606-12.

Lopez-Garcia E, Schulze MB, Meigs JB, Manson JE, Rifai N, Stampfer MJ, Willett WC, Hu FB. Consumption of

trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 2005; 135:

-66.

Salmeron J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, Willett WCl. Dietary fat intake and risk of

type 2 diabetes in women. Am J Clin Nutr 2001; 73: 1019-26.

King IB, Kristal AR, Schaffer S, Thornquist M, Goodman GE. Serum trans-fatty acids are associated with risk of

prostate cancer in beta-carotene and retinol efficacy trial. Cancer Epidemiol Biomarkers Prev 2005; 14: 988-92.

Rissanen H, Knekt P, Jarvinen R, Salminen I, Hakulinen T. Serum fatty acids and breast cancer incidence. Nutr

Cancer 2003; 45: 168-75.

Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanism. The production by leukocytes of super oxide,

a potential bactericidal agent. J Clin Invest 1973; 52: 741-744.

Hernández-Saavedra D, McCord JM. Evolución y radicales libres. Importancia del estrés oxidativo en la patología

humana. Rev Med Inst Mex Seguro Soc 2007; 45: 477-484.

Murrell GA, Francis MJ, Bromley L. Modulation of fibroblast proliferation by oxygen free radicals. Biochem J.

; 265: 659-65.

Spiteller G. Do changes in the cell membrane structure induce the generation of lipid per oxidation products

which serve as first signaling molecules in cell to cell communication? Prostaglandins Leukot Essent Fatty Acids

; 67: 151-62.

Halliwell B. Antioxidants. En: Ziegler EE, Filer LJ. Present knowledge in nutrition. 7th ed. ILSI Press, Washington

DC, 1996, pp. 596-603.

Ashour MN, Salem SI, El-Gadban HM, Elwan NM, Basu TK. Antioxidant status in children with protein-energy

malnutrition (PEM) living in Cairo, Egypt. Eur J Clin Nutr 1999; 52: 669-673.

Manary MJ, Leeuwenburgh C, Heinecke J. Increased oxidative stress in kwashiorkor. J Pediatr 2000; 137: 421-

Arthur MJ, Bentley IS, Tanner AR, Saunders PK, Millward-Sadler GH, Wright R. Oxygen-derived free radicals

promote hepatic injury in the rat. Gastroenterology 1958; 89: 1114-1122.

Ferrari R, Ceconi C, Curello S, Guarnieri C, Caldarera CM, Albertini A, Visioli O. Oxygen-mediated myocardial

damage during ischemia and reperfusion: role of the cellular defenses against oxygen toxicity. J Mol Cell Cardiol

; 17: 937-945.

Klausner JM, Paterson IS, Kobzik L, Valeri CR, Shepro D, Hechtman HB. Oxygen free radicals mediate ischemiainduced

lung injury. Surgery 1989; 105: 192-199.

Whitehead RG, Alleyne GA. Pathophysiological factors of importance in protein-calorie malnutrition. Brit Med Bull

; 28: 72-79.

Whitehead RG, Coward WA, Lunn PG, Rutishauser I. A comparison of the pathogenesis of protein-energy

malnutrition in Uganda and the Gambia. Trans R Soc Trop Med Hyg 1977; 71: 189-95.

Morlese JF, Forrester T, Jahoor F. Acute-phase protein response to infection in severe malnutrition. Am J

Physiol. 1998; 275(1 Pt 1): E112-7.

Vásquez-Garibay E, Campollo-Rivas O, Romero-Velarde E, Méndez-Estrada C, García-Iglesias T, Alvizo-Mora

JG, Vizmanos-Lamotte B. Effect of renutrition on natural and cell-mediated immune response in infants with

severe malnutrition. J Pediatr Gastroenterol Nutr 2002; 34: 296-301.

Publicado

2016-08-06