Systematic review of the internal and external structure of the bench press

Authors

  • Roberto García Paniagua HEME Research Group. Universidad de Extremadura, Cáceres, 10005. España
  • Juan Manuel Franco García HEME Research Group. Universidad de Extremadura, Cáceres, 10005. España
  • Manuel Chavarrías Olmedo HEME Research Group. Universidad de Extremadura, Cáceres, 10005. España
  • Jorge Pérez Gómez HEME Research Group. Universidad de Extremadura, Cáceres, 10005. España

DOI:

https://doi.org/10.19230/jonnpr.3699

Keywords:

Muscle activity, kinematic, kinetic, electromiography, strength training, sticking region

Abstract

Objective. A review of the literature was carried out with the aim of grouping the current knowledge on the analysis of the internal structure (muscle activity) and external structure (kinematic) studied together in the bench press exercise for a proper understanding of the phenomenon.

Methods. A search was made in the PUBMED database of articles that carried out an investigation on the muscle activity and kinematic of the bench press exercise. A total of 40 articles were obtained. Once analyzed, the inclusion and exclusion criteria were applied, a total of 8 articles were included.

Results. The pectoralis major, anterior deltoids, and triceps brachii muscles have been studied as the primary movers of exercise, observing the response of muscle activity in terms of changes in intensity, external stimuli, order of exercises, and subphases of movement. The pectoral and triceps stand out as muscles that present greater activity during exercise. In most studies, an increase in intensity leads to the appearance of the so-called sticking region, where a decrease in kinematic parameters appears during the lifting of the bar, accompanied by limited activation of the pectoral and anterior deltoid.

Conclusions. There is a greater knowledge of the internal structure, carried out methodologically in different ways, so it is necessary to unify the procedures to improve knowledge of the phenomenon. However, there is no much studies focus on kinematic knowledge of movement and its study, as well as establish the relationships between these parameters and muscle activity in order to obtain the cause-effect relationship between muscle activity and the movement it produces.

 

Downloads

Download data is not yet available.

References

McGuigan MR, Wright GA, Fleck SJ. Strength training for athletes: does it really help sports performance? Int J Sports Physiol Perform [Internet]. 2012;7(1):2-5. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22461461

Helms ER, Storey A, Cross MR, Brown SR, Lenetsky S, Ramsay H, et al. RPE and Velocity Relationships for the Back Squat, Bench Press, and Deadlift in Powerlifters. J Strength Cond Res [Internet]. 2017;31(2):292-7. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27243918

Padulo J, Laffaye G, Chaouachi A, Chamari K. Bench press exercise: the key points. J Sports Med Phys Fitness [Internet]. 2015;55(6):604-8. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24823345

Medrano IC, Cantalejo AD. Eficacia y seguridad del press de banca. Revisión. Rev Int Med Cienc Act Física Deporte [Internet]. 2008;8(32):6-14. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=3628232

Castillo F, Valverde T, Morales A, Pérez-Guerra A, de León F, García-Manso JM. Maximum power, optimal load and optimal power spectrum for power training in upper-body (bench press), a review. Rev Andal Med Deporte [Internet]. 2012;5(1):18-27. Disponible en: http://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-maximum-power-optimal-load-optimal-X1888754612374548

Stastny P, Gołaś A, Blazek D, Maszczyk A, Wilk M, Pietraszewski P, et al. A systematic review of surface electromyography analyses of the bench press movement task. PloS One [Internet]. 2017;12(2):e0171632. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28170449

Madsen N, McLaughlin T. Kinematic factors influencing performance and injury risk in the bench press exercise. Med Sci Sports Exerc [Internet]. 1984;16(4):376-81. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/6493018

Elliott BC, Wilson GJ, Kerr GK. A biomechanical analysis of the sticking region in the bench press: Med Sci Sports Exerc [Internet]. 1989;21(4):450-62. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/2779404

van den Tillaar R, Ettema G. A comparison of successful and unsuccessful attempts in maximal bench pressing. Med Sci Sports Exerc [Internet]. 2009;41(11):2056-63. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19812510

Frost DM, Cronin JB, Newton RU. A comparison of the kinematics, kinetics and muscle activity between pneumatic and free weight resistance. Eur J Appl Physiol [Internet]. 2008;104(6):937-56. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18830619

Król H, Gołaś A. Effect of Barbell Weight on the Structure of the Flat Bench Press. J Strength Cond Res [Internet]. 2017;31(5):1321-37. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400411/

van den Tillaar R, Saeterbakken AH. Fatigue effects upon sticking region and electromyography in a six-repetition maximum bench press. J Sports Sci [Internet]. 2013;31(16):1823-30. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23879709

Brennecke A, Guimarães TM, Leone R, Cadarci M, Mochizuki L, Simão R, et al. Neuromuscular activity during bench press exercise performed with and without the preexhaustion method. J Strength Cond Res [Internet]. 2009;23(7):1933-40. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19855317

Fernandez-Del-Olmo M, Río-Rodríguez D, Iglesias-Soler E, Acero RM. Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions. PLoS ONE [Internet]. 2014;9(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905039/

van den Tillaar R, Ettema G. The «sticking period» in a maximum bench press. J Sports Sci [Internet]. 2010;28(5):529-35. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20373201

Tillaar RVD, Sæterbakken A. The sticking region in three chest-press exercises with increasing degrees of freedom. J Strength Cond Res [Internet]. 2012;26(11):2962-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22158100

Robertson GE, Caldwell GE, Hamill J, Kamen G, Whittlesey S. Research Methods in Biomechanics [Internet]. Human Kinetics; 2018. 442 p. Disponible en: https://books.google.es/books/about/Research_Methods_in_Biomechanics_2E.html?id=gRn8AAAAQBAJ&redir_esc=y

Gollhofer A, Horstmann GA, Schmidtbleicher D, Schönthal D. Reproducibility of electromyographic patterns in stretch-shortening type contractions. Eur J Appl Physiol [Internet]. 1990;60(1):7-14. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/2311598

Finucane SD, Rafeei T, Kues J, Lamb RL, Mayhew TP. Reproducibility of electromyographic recordings of submaximal concentric and eccentric muscle contractions in humans. Electroencephalogr Clin Neurophysiol [Internet]. 1998;109(4):290-6. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/9751290

Yang JF, Winter DA. Electromyography reliability in maximal and submaximal isometric contractions. Arch Phys Med Rehabil [Internet]. 1983;64(9):417-20. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/6615179

Newton RU, Murphy AJ, Humphries BJ, Wilson GJ, Kraemer WJ, Häkkinen K. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol [Internet]. 1997;75(4):333-42. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/9134365

American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc [Internet]. 2009;41(3):687-708. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19204579

Published

2021-02-06