Papel de la Nogina en obesidad: potencial biomarcador?

  • Maria Luz Gunturiz Albarracín Project Bank Team, Public Health Research Division, National Institute of Health. Avenue Street 26 No 51-20 CAN, Bogotá, D.C., Colombia
Palabras clave: Nogina, obesidad, sobrepeso, adipogénesis

Resumen

La obesidad es una enfermedad multifactorial resultado de la interacción entre factores genéticos, conductuales y ambientales que pueden influir en la respuesta individual a los hábitos alimenticios y de ejercicio físico. Su prevalencia ha aumentado dramáticamente durante la última década convirtiéndose en un problema de salud pública porque se asocia a patologías como diabetes tipo II, daño cardiovascular, hiperlipidemias y cáncer, que afectan a ambos sexos, todas las edades y todos los grupos étnicos. Actualmente, es la enfermedad metabólica más prevalente en los países desarrollados.
Hay muchos loci y varios genes que se han asociado con la predisposición a la obesidad, a la delgadez, y al desarrollo de la obesidad y se clasifican según su expresión en diferentes etapas de esta condición, como inicio temprano, predisposición a la obesidad, inicio tardío, obesidad severa (mórbida).
En este artículo se revisa el papel potencial del gen Nogina en la adipogénesis y los posibles mecanismos o vías de señalización en los que este gen interviene para conducir a la obesidad.

 

Descargas

La descarga de datos todavía no está disponible.

Citas

Gunturiz ML, Forero AY, Chaparro PE. Genes Implicated in Obesity and Overweight: Potential Biomarkers of Early Diagnosis. Curr Res Clin Diab Obes. 2018;CRCDO-101. DOI: 10.29011/CRCDO-101/100001.

Flegal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999-2000. JAMA. 2002;288(14):1723-7.

Wang YF, Beydoun MA, Liang L, Caballero B, Kumanyika SK. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity. 2008; 16(10):2323–30.

Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obesity. 2008; 32(9):1431–7.

Organización Mundial de la Salud. Obesidad y sobrepeso. Nota Descriptiva.2016. N° 311. [Fecha de consulta octubre 8 de 2019]. Disponible en: http://www.who.int/mediacentre/factsheets/fs311/es/

Organización Mundial de la Salud. WHO Child Growth Standards. [Fecha de consulta octubre 16 de 2019] Disponible en: http://www.who.int/childgrowth/standards/Technical_report.pdf?ua=1

World Health Organization. Global Nutrition Targets 2025: Stunting Policy Brief (WHO/NMH/NHD/14.3). Geneva: World Health Organization; 2014. [Fecha de consulta septiembre 28 de 2019] Disponible en: http://www.thousanddays.org/wp-content/uploads/Stunting-Policy-Brief.pdf

Böttcher Y, Körner A, Kovacs P, Kiess W. Obesity genes: implication in childhood obesity. Paediatrics and Child Health. 2012; 22(1): 31-6.

O’Rahilly S. Human genetics illuminates the paths to metabolic disease. Nature. 2009; 462: 307-14.

Ulloa-Martínez M, Burguete-García AI, Murugesan S, Hoyo-Vadillo C, Cruz-Lopez M, García-Mena J. Expression of candidate genes associated with obesity in peripheral white blood cells of Mexican children. Arch Med Sci. 2016;12(5):968-76.

Herrera BM, Lindgren CM. The genetics of obesity. Curr Diab Rep. 2010; 10: 498-505.

Zhu J, Su X, Li G, Chen J, Tang B, Yang Y. The incidence of acute myocardial infarction in relation to overweight and obesity: a meta-analysis. Arch Med Sci 2014; 10: 855-62.

Burgos AM, Csendes A, Braghetto I, Muñoz A, Villanueva M. Hallazgos histológicos gástricos en obesos mórbidos sometidos a gastrectomía vertical laparoscópica. Rev Chil Cir. 2014; 66(3): 224-30.

Barak N, Ehrenpreis ED, Harrison IR, Sitrin MD. Gastro-oesophageal reflux disease in obesity: pathophysiological and therapeutic considerations. Obes Rev. 2002;3:9-15.

Renehan AG, Tyson M, Egger M,Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008;371:569-78.

Piña-Calva A, Álvarez-González I, Madrigal-Bujaidar E, Espinosa E. Revisión de los principales genes involucrados en el desarrollo de la obesidad. Revista Mexicana de Ciencias Farmacéuticas. 2011; 42 (4): 26-38.

Rankinen TY, Zuberi A, Chagnon Y, Weisnagelv J, Argyropoulos G, Walts B, et al. The Human Obesity Gene Map: The 2005 Update. Obesity. 2006; 14:529-644.

Hinney A, Vogel CI y Hebebrand J. From monogenic to polygenic obesity: recent advances. Eur Child Adoles Psy. 2010 ;19(3):297-310.

Das U. Obesity: genes, brain, gut, and environment. Nutrition. 2010; 26(5):459-73.

Prospect. Noggin gene. [Fecha de consulta septiembre 8 de 2019]. Available in: https://www.prospecbio.com/noggin

Valenzuela DM, Economides AN, Rojas E, Lamb TM, Nunez L, Jones P, et al. Identification of mammalian noggin and its expression in the adult nervous system. J Neurosci. 1995; 15:6077–84.

Brunet LJ, McMahon JA, McMahon AP, Harland RM. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science. 1998; 280: 1455–7.

Potti TA, Petty EM, Lesperance MM. A Comprehensive Review of Reported Heritable Noggin Associated Syndromes and Proposed Clinical Utility of One Broadly Inclusive Diagnostic Term: NOG-Related Symphalangism Spectrum Disorder (NOG-SSD). Human Mutation. 2011¸32(8): 877–86. DOI 10.1002/humu.21515.

Marcelino J, Sciortino CM, Romero MF, Ulatowski LM, Ballock RT, Economides AN, et al. Human disease-causing NOG missense mutations: effects on noggin secretion, dimer formation, and bone morphogenetic protein binding. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98(20): 11353–8. DOI:10.1073/pnas.201367598.

Xu H, Huang W, Wang Y, Sun W, Tang J, Li D, et al. The function of BMP4 during neurogenesis in the adult hippocampus in Alzheimer's disease. Ageing Research Reviews. 2013; 12(1): 157–64. DOI:10.1016/j.arr.2012.05.002.

Blázquez-Medela AM, Jumabay M, Boström KI. Beyond the bone: Bone morphogenetic protein signaling in adipose tissue". Obesity Reviews. 2019; 20(5): 648–58. DOI:10.1111/obr.12822.

Bond AM, Bhalala OG, Kessler JA. The Dynamic Role of Bone Morphogenetic Proteins in Neural Stem Cell Fate and Maturation. Dev Neurobiol. 2012; 72(7): 1068–84. DOI: 10.1002/dneu.22022.

Anderson RM, Lawrence AR, Stottmann RW, Bachiller D, and Klingensmith J. Chordin and noggin promote organizing centers of forebrain development in the mouse. Development. 2002;129: 4975-87.

Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, et al. Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J. Cell Biol. 1998; 142:295–305.

Sawant A, Chanda D, Isayeva T, Tsuladze G, Garvey WT, Ponnazhagan S. Noggin Is Novel Inducer of Mesenchymal Stem Cell Adipogenesis. J Biol Chem. 2012; 287(15): 12241–9. DOI: 10.1074/jbc.M111.293613.

Wu XB, Li Y, Schneider A, Yu W, Rajendren G, Iqbal J, et al. Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice. J. Clin. Invest. 2003; 112:924–34.

Kajkenova O, Lecka-Czernik B, Gubrij I, Hauser SP, Takahashi K, Parfitt AM, et al. Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J. Bone Miner Res. 1997; 12:1772–9.

Holecki M, Wiecek A. Relationship between body fat mass and bone metabolism. Polskie Archiwum Medycyny Wewntrznej. 2010; 120:361–7.

Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, et al. Obesity. 2011;19:49–53.

Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000;130, 3122S–3126S.

Kim JS, Ellman MB, An HS, van Wijnen AJ, Borgia JA, Im HJ. Insulin-like growth factor 1 synergizes with bone morphogenetic protein 7-mediated anabolism in bovine intervertebral disc cells. Arthritis Rheum. 2000; 62: 3706–15.

Moseti D, Regassa A, Woo-Kyun Kim WK. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int J Mol Sci. 2016; 17(1): 124. DOI: 10.3390/ijms17010124.

Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. 1998;78:783–809.

Walther C, Guenet JL, Simon D, Deutsch U, Jostes B, Goulding MD. Pax: a murine multigene family of paired box-containing genes. Genomics. 1991; 11, 424–34.

Chalepakis G, Fritsch R, Fickenscher H, Deutsch U, Goulding M, Gruss P. The molecular basis of the undulated/Pax-1 mutation. Cell. 1991; 66, 873–84.

Warden CH, Stone S, Chiu S, Diament AL, Corva P, Shattuck D, et al. Identification of a congenic mouse line with obesity and body length phenotypes. Mamm. Genome. 2004; 15:460–71.

DiPaola CP, Farmer JC, Manova K, Niswander LA. Molecular signaling in intervertebral disk development. J. Orthop. Res. 2005; 23:1112–9.

Fan CM, Porter JA, Chiang C, Chang DT, Beachy PA, Tessier-Lavigne M. Long range sclerotome induction by sonic hedgehog. Direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell. 1995;81:457–65.

Publicado
2020-12-26