Esta es un versión antigua publicada el 2023-05-07. Consulte la versión más reciente.

Autofagia un sistema celular de limpieza clave para la salud. Una visita al Premio Nobel de Fisiología o Medicina de 2016

Autores/as

  • Adrián Macho-González Investigador postdoctoral en el Albert Einstein College of Medicine y la Facultad de Farmacia de la Universidad Complutense de Madrid
  • Francisco J Sanchez Muniz Académico de Número de la Real Academia Nacional de Farmacia. Departamento de Nutrición. Facultad de Farmacia, Universidad Complutense de Madrid (España)

DOI:

https://doi.org/10.19230/jonnpr.4912

Resumen

Introducción. En 2016, el Instituto Karolinska premió a Yoshinori Ohsumi con el Premio Nobel de Fisiología y Medicina por sus estudios en autofagia. Posteriormente muchas investigaciones han demostrado la importancia de este proceso en la salud.

Métodos. Se revisan tres aspectos: a) la información del Comité del Nobel sobre las investigaciones del galardonado; b) los mecanismos moleculares implicados en la autofagia; y c) la relación entre autofagia y salud.

Resultados. Se presentan los aspectos más relevantes de la investigación sobre la autofagia, desde las investigaciones de De Duve con los lisosomas hasta algunos detalles moleculares relevantes.

 

Se comentan datos biográficos de Ohsumi y aspectos de su investigación que llevaron al Nobel; también las características de los tres tipos de autofagia: macrofagia, microfagia y dependiente de chaperonas. Este proceso es altamente dependiente del estado nutricional, del estrés y de la expresión de ciertos genes, particularmente los de autofagia (ATG). Alteraciones en la expresión o la existencia de polimorfismos en ATG originan cambios significativos en la formación de los autofagosomas. Se explica la importancia en la salud y algunas patologías muy prevalentes del reciclado de células completas y de sus componentes aislados, así como el papel de la interacción de algunos fármacos en la función autofágica.

Conclusión. La autofagia es un proceso celular muy común, altamente dependiente del estado nutricional y de la expresión y polimorfismos de los ATG. Es determinante en la maduración, desarrollo y salud, y participa de forma relevante en el envejecimiento y en la prevención de enfermedades degenerativas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Sánchez-Muniz FJ, Culebras JM, Vicente Vacas L. In the month of the Nobel Prize Awards, we pay tribute to Alfred Nobel and to the recipients of the 2017 Prize in Physiology and Medicine. JONNPR 2017; 2(11):577-580. doi:10.19230/jonnpr.1891.

Sánchez-Muniz FJ, Culebras JM, Vicente Vacas L. In the month of the Nobel Prize Awards, we pay tribute to Alfred Nobel and to the recipients of the 2018 Prize in Physiology and Medicine. JONNPR 2018; 3(11):857-865. http://dx.doi.org/10.19230/jonnpr.2777.

Sánchez-Muniz FJ, Culebras JM, Vicente Vacas L. We pay tribute to Alfred Nobel and to the recipients of the 2019 Prize in Physiology and Medicine. JONNPR 2020; 5(3):236-245. doi:10.19230/jonnpr.3451.

Sánchez-Muniz FJ, Culebras J, Vicente Vacas L. En el mes de la concesión de los Premios Nobel, rendimos homenaje a Alfred Nobel y a los galardonados con el Premio de Fisiología y Medicina de 2020. JONNPR 2020; 5(11):1277-1295. doi: 10.19230/jonnpr.4028

Sánchez-Muniz FJ, Culebras JM, Vicente-Vacas L. En el mes de la concesión de los Premios Nobel, rendimos homenaje a Alfred Nobel y a los galardonados con el Premio de Fisiología y Medicina de 2021. JONNPR. 2022; 7(2):112-125. https://dx.doi.org/10.19230/jonnpr.4650

https://canalbiblos.blogspot.com/2016/12/ceremonia-de-entrega-de-los-premios.html

Publicado el 12/23/2016 06:00:00 p. m. por Biblioteca de Medicina

Cascales Angosto M, Mayor Zaragoza, F (Coord). Información sobre la entrega de los Premios Nobel 2016, En. Premios Nobel 2016. Comentarios a sus actividades y descubrimientos. Fundación Areces, Madrid, 2016, pp. 17-27.

Cascales Angosto M, Ortiz-Melón JM, Mayor Zaragoza, F Premio Nobel de Fisiología o Medicina 2016. Yoshinori Oshumi ha recibido el Nobel de fisiología o medicina 2016 por el descubrimiento de los mecanismos celulares de autofagia. Cascales Angosto M, Mayor Zaragoza, F (Coord). Premios Nobel 2016. Comentarios a sus actividades y descubrimientos. Fundación Areces, 2016, pp. 27-69.

Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 2014; 24:9–23. https://doi.org/10.1038/cr.2013.169.

Onodera J, Ohsumi Y. Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J Biol Chem 2004; 279:16071–16076. https://doi.org/10.1074/jbc.M312706200

Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 1998; 273:3963–3966. https://doi.org/10.1074/jbc.273.7.3963

Makino S, Kawamata T, Iwasaki S, Ohsumi Y. Selectivity of mRNA degradation by autophagy in yeast. Nature Communications 2021;12:2316. doi.org/10.1038/s41467-021-22574-6

Harnett MM, Pineda MA, Latré de Laté P, Eason RJ, Besteiro S, Harnett W, Langsley G. From Christian de Duve to Yoshinori Ohsumi: More to autophagy than just dining at home. Biomed J. 2017;40(1):9-22. doi: 10.1016/j.bj.2016.12.004.

Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol. 2004;14(2):70-77. doi:10.1016/j.tcb.2003.12.002.

de Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol 1966;28:435–492. https://doi.org/10.1146/annurev.ph.28.030166.002251

de Duve C. The lysosome turns fifty. Nat Cell Biol 2005;7:847–849. https://doi.org/10.1146/annurev.ph.28.030166.002251

Klionsky DJ. Autophagy revisited: a conversation with Christian de Duve. Autophagy. 2008;4(6):740-743. doi:10.4161/auto.6398.

Deter RL, Baudhuin P, de Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 1967;35(2):C11–C16. https://doi.org/10.1083/jcb.35.2.C1

Pfeifer U, Warmuth-Metz M. Inhibition by insulin of cellular autophagy in proximal tubular cells of rat kidney. Am J Physiol 1983;244:E109-114. https://doi.org/10.1152/ajpendo.1983.244.2.E109

Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 2018;19(6):365-381. doi: 10.1038/s41580-018-0001-6.

Madrigal-Matute J, Cuervo AM. Regulation of liver metabolism by autophagy. Gastroenterology. 2016;150(2):328-339. doi: 10.1053/j.gastro.2015.09.042.

Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014;24(1):24-41. doi: 10.1038/cr.2013.168.

Mehrpour M, Esclatine A, Beau I, Codogno P. Overview of macroautophagy regulation in mammalian cells. Cell Res. 2010;20(7):748-762. doi: 10.1038/cr.2010.82.

Wrighton KH. Autophagy: ESCRTing proteins for microautophagy. Nat Rev Mol Cell Biol. 2011;12(3):136-137. doi: 10.1038/nrm3075.

Olsvik HL, Svenning S, Abudu YP, Brech A, Stenmark H, Johansen T, Mejlvang J. Endosomal microautophagy is an integrated part of the autophagic response to amino acid starvation. Autophagy 2019;15(1):182-183. doi:10.1080/15548627.2018.1532265.

Cam H, Easton JB, High A, Houghton PJ. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol Cell 2010; 40: 509-520. doi:10.1016/j.molcel.2010.10.030.

Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene 2006; 25: 6436-6446. doi:10.1038/sj.onc.1209886.

Costas MA, Rubio MF. Autofagia, una estrategia de supervivencia celular. Medicina (Buenos Aires). 2017; 77(4):314-320. ISSN 1669-9106 (En línea)

Reggiori F, Ungermann C. Autophagosome maturation and fusion. J Mol Biol 2017; 429: 486-496. doi: 10.1016/j.jmb.2017.01.002

Kerr JS, Adriaanse BA, Greig NH, et al. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci 2017; 40: 151-66. doi: 10.1016/j.tins.2017.01.002.

Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36: 585-595. doi:10.1038/ng1362.

Liu G, Bi Y, Wang R, Wang X. Self-eating and self-defense: autophagy controls innate immunity and adaptive immunity. J Leukoc Biol, 2013. 93(4): 511-519. doi.org/10.1189/jlb.0812389

Jamanca Poma YM. Análisis de polimorfismos de genes relacionados a la autofagia en pacientes con colitis ulcerosa. Universidad de Salamanca. Instituto universitario de Biología Molecular y Celular del Cáncer. Departamento de Medicina. Tesis Doctoral 2017.

Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol, 2007. 8(11):931-937. doi: 10.1038/nrm2245.

Jones SA, Mills KHG, Harris J. Autophagy and inflammatory diseases. Immunol Cell Biol, 2013. 91(3):250-258. Doi: 10.1038/icb.2012.82

Vakifahmetoglu-Norberg H, Xia HG, Yuan J. Pharmacologic agents targeting autophagy. J Clin Invest 2015; 125: 5-13. doi: 10.1172/JCI73937.

Perrotta C, Cattaneo MG, Molteni R, De Palma C. Autophagy in mammalian development and differentiation. Front Cell Dev Biol 2020;8:602901. doi: 10.3389/fcell.2020.602901

Uddin MS, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, Atanasov AG, et al. Autophagy and Alzheimer's disease: From molecular mechanisms to therapeutic implications. Front Aging Neurosci 2018;30;10:04. doi: 10.3389/fnagi.2018.00004.

Hou X, Watzlawik JO, Fiesel FC, Springer W. Autophagy in Parkinson's Disease. J Mol Biol. 2020;432(8):2651-2672. doi: 10.1016/j.jmb.2020.01.037.

Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 2008;8(4):318-324. doi: 10.1016/j.cmet.2008.08.013.

Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008;8(4):325-332. doi: 10.1016/j.cmet.2008.08.009.

Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature. 2009;30;458(7242):1131-1135. doi: 10.1038/nature07976.

Schneider JL, Suh Y, Cuervo AM. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab. 2014;20(3):417-432. doi: 10.1016/j.cmet.2014.06.009.

Stienstra R, Haim Y, Riahi Y, Netea M, Rudich A, Leibowitz G. Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia 2014;57:1505–1516. Doi:10.1007/s00125-014-3255-3

Quan W, Lim YM, Lee MS. Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic ?-cells. Exp Mol Med. 2012;44(2):81-88. doi:10.3858/emm.2012.44.2.030.

Sánchez Arroyo c, González Sarmiento R. Estudio de fármacos inhibidores de autofagia y epigenéticos en una línea celular de cáncer de próstata. Farma Journal, 2017;2(2): 95-105.

Hippert MM, O’Toole PS, Thorburn A. Autophagy in cancer: good, bad, or both? Cancer Res 2006; 66:9349-9351. doi: 10.1158/0008-5472.CAN-06-1597

Claudia Orallo Luna C, González Sarmiento R. Evaluación del efecto de la cloroquina sobre la autofagia en células tumorales de mama y su posible utilidad como fármaco antineoplásico. FarmaJournal 2016; 1(1): 41-51.

Sharma S, Witteveen PO, Lolkema MP, Hess D, Gelderblom H, Hussain SA, et al. A phase I, open-label, multicenter study to evaluate the pharmacokinetics and safety of oral panobinostat in patients with advanced solid tumors and varying degrees of renal function. Cancer Chemother Pharmacol. 2015; 75(1):87-95. doi: 10.1007/s00280-014-2594-6.

Gomez Mellado VE, Giovannetti E, Peters GJ. Unraveling the complexity of autophagy: potential therapeutic applications in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2015; 35: 11-19. doi:10.1016/j.semcancer.2015.09.011

Hua F, Shang S, Hu ZW. Seeking new anti-cancer agents from autophagy-regulating natural products. J Asian Nat Prod Res 2017; 19: 305-313. doi: 10.1080/10286020.2017.1304385.

Kuzu OF, Toprak M, Noory MA, Robertson GP. Effect of lysosomotropic molecules on cellular homeostasis. Pharmacol Res 2017; 117: 177-184. doi: 10.1016/j.phrs.2016.12.021.

Anzick S, Kononen J, Walker R, et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 1997; 277: 965-968. doi: 10.1126/science.277.5328.965.

Colo GP, Rosato RR, Grant S, Costas MA. RAC3 down-regulation sensitizes human chronic myeloid leukemia cells to TRAIL-induced apoptosis. FEBS Lett 2007; 581: 5075-5081. doi: 10.1016/j.febslet.2007.09.052.

Gnanapragasam VJ, Leung HY, Pulimood AS, Neal DE, Robson CN. Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br J Cancer 2001; 85: 1928-1936. doi: 10.1054/bjoc.2001.2179.

Ma G, Ren Y, Wang K, He J. SRC-3 has a role in cancer other than as a nuclear receptor coactivator. Int J Biol Sci 2011; 7: 664-672. doi: 10.7150/ijbs.7.664.

Sakakura C, Hagiwara A, Yasuoka R, et al. Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers. Int J Cancer (Pred Oncol) 2000; 89: 217-223. doi: 10.1002/1097-0215(20000520)89:3<217

Fernandez Larrosa PN, Alvarado CV, Rubio MF, et al. Nuclear receptor coactivator RAC3 inhibits autophagy. Cancer Sci 2012; 103: 2064-71. doi: 10.1111/cas.12019.

Sánchez-Muniz FJ, Gesterio E, Espárrago Rodilla M, Rodríguez-Bernal B, Bastida, S. La alimentación de la madre durante el embarazo condiciona el desarrollo pancreático, el estatus hormonal del feto y la concentración de biomarcadores al nacimiento de Diabetes mellitus y síndrome metabólico. Nutr Hosp 2013; 28(2): 250-274. doi:10.3305/nh.2013.28.2.630760

Gesteiro E, Bastida S., Rodríguez-Bernal, B, Sánchez-Muniz FJ. Adherence to Mediterranean diet during pregnancy and serum lipid, lipoprotein, and homocysteine concentrations at birth. Eur J Nutr 2015; 54(7):1191-1199. doi: 10.1007/s00394-014-0798-5.

Gesteiro E, Bastida S, Sánchez-Muniz FJ. Pregnancy and Mediterranean diet. En: Mediterranean diet (2nd edition). Preedy VR, Watson RR (editors). Academic Press: London UK. 2020; pp. 409-427. https://doi.org/10.1016/B978-0-12-818649-7.00037-0.

Descargas

Publicado

2023-05-07

Versiones