JONNPR y las investigaciones realizadas en el camino al Premio Nobel 2019. Una visión personal sobre las moléculas y los aspectos moleculares y mecanismos de control subyacentes relacionados con la hipoxia y el cáncer

Autores/as

  • Francisco J. Sánchez-Muniz Catedrático de Nutrición. Facultad de Farmacia de la Universidad Complutense de Madrid y Académico de número de la Real Academia Nacional de Farmacia, España
  • Jesús M Culebras De la Real Academia de Medicina y Cirugía de Valladolid y del IBIOMED, Universidad de León. Director de Journal of Negative & No Positive Results. España
  • Luis Vicente-Vacas Editor de Journal of Negative & No Positive Results. España

DOI:

https://doi.org/10.19230/jonnpr.3452

Palabras clave:

Premios Nobel, hipoxia, normoxia, HIF, VHL, nuevas perspectivas farmacológicas

Resumen

Este artículo especial desgrana los mecanismos y aspectos centrales relacionados con tres moléculas: la eritropoyetina, el factor inducible por hipoxia (HIF) y la proteína von Hippel-Lindau (pVHL) que han dado lugar  tras múltiples investigaciones a galardonar con el Peremio Nobel de Fisiología y Medicina 2019 a los científicos  William G. Kaelin, Gregg L. Semenza y Peter J. Ratcliffe. Se señalan los mecanismos moleculares que tiene lugar  en situación de normoxia, hipoxia y pseudohipoxia. El artículo termina señalando las perspectivas  farmacológicas que ha abierto la relación investigadora de estos científicos en el campo del cáncer y de muchas enfermedades degenerativas.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Sánchez-Muniz FJ, Culebras JM, Vicente-Vacas L. Rendimos homenaje a Alfred Nobel y a los galardonados con el Premio de Fisiología y Medicina de 2019. JONNPR. 2020;5(3):221-30. DOI: 10.19230/jonnpr.3451

Premio Nobel de Medicina 2019: Página Oficial. https://www.nobelprizemedicine.org/the-nobel-prize-in- physiology-or-medicine-2019/

Moslehi J, Rathmell WK. The 2019 Nobel Prize honors fundamental discoveries in hypoxia response. J Clin Invest. 2019 Nov 25. pii: 134813. doi: 10.1172/JCI134813.

Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270(3):1230–1237.

Wagner Grau P. El factor HIF-1 inducido por la hipoxia y la sensibilidad al oxígeno. Rol del hierro intracellular. Acta Med. Per. 2011; 28(3):1-7.

Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M, Perdew GH, Bradfield CA. Characterization of a subset of the basic helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem. 1997; 272 (13):8581-8593.

Hanaoka M; Droma Y; Basnyat B; Ito M; Kobayashi N; Katsuyama Y; Kubo K; Ota M. Genetic Variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas. PLos One. 2012; 7(12): e50566.

Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010; 329(5987):72–75.

https://es.wikipedia.org/wiki/EPAS1 visitada en 30 de noviembre de 2019.

Hogenesch JB; Gu YZ; Jain S; Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. U.S.A. 1998; 95(10):5474-5479.

Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996; 16(9):4604–4613.

Von Hippel-Lindau disease / Genetic and Rare Diseases Information Center (GARD) –an NCATS Program. rarediseases.info.nih.gov. visitada en 30 noviembre de 2019.

Maher ER, Glenn GM, Walther M, Maher ER, Neumann HP, Richard S. von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011; 19(6): 617–623.

Friedrich CA. Von Hippel-Lindau syndrome. A pleomorphic condition. Cancer. 1999; 86(11 Suppl): 2478–2482.

Kondo K, Kaelin WG. The von Hippel–Lindau tumor suppressor gene. Exp Cell Res. 2001; 264(1):117–125.

Nordstrom-O'Brien M1, van der Luijt RB, van Rooijen E, van den Ouweland AM, Majoor-Krakauer DF, Lolkema MP, van Brussel A, Voest EE, Giles RH. Genetic analysis of von Hippel-Lindau disease. Hum. Mutat. 2010; 31(5):521–537.

Stebbins CE, Kaelin WG, Pavletich NP. Structure of the VHL-ElonginC-Elongin B complex: implications for VHL tumor suppressor function. Science. 1999; 284(5413):455–461.

Maxwell PH, Pugh CW, Ratcliffe PJ. Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci U S A. 1993; 90(6):2423–2427.

Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999; 399(6733):271–275.

Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001; 292(5516):468–472.

Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001; 292(5516):464–468.

Kaelin WG. Von Hippel-Lindau disease. Annu Rev Pathol. 2007; 2:145-173.

Bader HL; Hsu T. Systemic VHL gene functions and the VHL disease. FEBS Letters. 2012; 586(11):1562–1569.

Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001; 107(1):43–54.

Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001; 294(5545):1337–1340.

Ivan M, Haberberger T, Gervasi DC, Michelson KS, Günzler V, Kondo K, Yang H, Sorokina I, Conaway RC, Conaway JW, Kaelin WG Jr. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxiainducible factor. Proc Natl Acad Sci U S A. 2002; 99(21):13459–13464.

Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood. 2008; 111(6):3236–3244.

Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TR, McMullin MF, Lee FS. A gain-offunction mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med. 2008; 358(2):162–168.

Courtney KD, Infante JR, Lam ET, Figlin RA, Rini BI, Brugarolas J, Zojwalla NJ, Lowe AM, Wang K, Wallace EM, Josey JA, Choueiri TK. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J Clin Oncol. 2018; 36(9):867–874.

Publicado

2020-01-05