Contenido de macroelementos, elementos traza y metales tóxicos en mieles comerciales

Autores/as

  • Saray Díaz Área de Toxicología. Facultad de Ciencias de la Salud. Universidad de La Laguna
  • Soraya Paz Área de Toxicología. Facultad de Ciencias de la Salud. Universidad de La Laguna http://orcid.org/0000-0003-0878-7138
  • Carmen Rubio Área de Toxicología. Facultad de Ciencias de la Salud. Universidad de La Laguna
  • Ángel J. Gutiérrez Área de Toxicología. Facultad de Ciencias de la Salud. Universidad de La Laguna
  • Dailos González-Weller Laboratorio de Salud Pública. Área de Salud de Tenerife. Santa Cruz de Tenerife
  • Consuelo Revert Área de Toxicología. Facultad de Ciencias de la Salud. Universidad de La Laguna
  • Arturo Hardisson Área de Toxicología. Facultad de Ciencias de la Salud. Universidad de La Laguna

DOI:

https://doi.org/10.19230/jonnpr.2607

Palabras clave:

miel, metales, contaminación, riesgo tóxico, ICP OES

Resumen

Introducción: La miel es el producto natural producido por las abejas melíferas a partir del néctar de las flores. Esta sustancia dulce es consumida como endulzante. La composición de la miel está influenciada por múltiples factores, entre los que se encuentra el ambiente. El aumento de la contaminación ambiental y la capacidad de bioacumulación de metales en las mieles hace necesario  determinar el contenido de metales en este alimento.

Objetivos: El objetivo de este estudio es determinar el contenido de macroelementos (Na, K, Ca, Mg), elementos traza esenciales y no esenciales (Fe, Cu, Zn, Cr, Mn, Mo, Co, B, Ba, Ni, Sr, V, Li) y  metales tóxicos (Al, Cd, Pb) para evaluar el aporte nutricional y el riesgo toxicológico teniendo en cuenta los valores de ingesta recomendada y máxima, respectivamente.

Material y métodos: Se han analizado un total de 30 muestras de mieles comerciales adquiridas en grandes superficies de la isla de Tenerife (Islas Canarias, España) mediante ICP OES (inductively coupled plasma optical emission spectrometry).

Resultados y discusión: El K (879 mg/kg peso húmedo) es el macroelemento que más destaca. Mientras que, de los elementos traza, es notable el nivel de de B (3,56 mg/kg p.h.) y Mn (3,00  mg/kg p.h). El Al (2,96 mg/kg p.h.) es el metal tóxico que destaca, seguido de Pb (0,04 mg/kg p.h.) y  Cd (0,003 mg/kg p.h.). El consumo de 25 g/día de estas mieles supondría un aporte destacado de Mn  (3,26% hombres, 4,17% mujeres) así como un porcentaje de contribución del 2,92% de la TDI de Pb.

Conclusión: El consumo de estas mieles no supondría un riesgo para la salud de los adultos.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Hernández OM, Fraga JMG, Jiménez AI, Jiménez F, Arias JJ. Characterization of honey from the Canary Islands: determination of the mineral content by atomic absorption spectrophotometry. Food Chem. 2005; 93: 449–458.

Moguel Ordóñez YB, Echazarreta González C, Mora Escobedo R. Calidad fisicoquímica de la miel de abeja Apis mellifera producida en el estado de Yucatán durante diferentes etapas del proceso de producción y tipos de floración. Tec Pecu Méx 2005; 43(3): 323-334.

Armando Ulloa J, Mondragon Cortez PM, Rodríguez Rodríguez R, Resendiz Vazquez JA, Rosas Ulloa P. La miel de abeja y su importancia. Revista Fuente. 2010; 2(4): 11-18.

Estrada H, Gamboa MM, Chaves C, Arias ML. Evaluación de la actividad antimicrobiana de la miel de abeja contra Staphylococcus aureus, taphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, Salmonella enteritidis, Listeria monocytogenes y Aspergillus niger. Evaluación de su carga microbiológica. Arch. Latinoameric. Nutr. 2005; 55(2).

González-Miret ML, Terrab A, Hernanz D, Fernández-Recamales MA, Heredia FJ. Multivariate Correlation between Color and Mineral Composition of Honeys and by Their Botanical Origin. J. Agric. Food Chem. 2005; 53(7): 2574–258.

Lachman J, Kolihova D, Miholova D, Kosata J, Titra D, Kult K. Analysis of minority honey components: Possible use for the evaluation of honey quality. Food Chem. 2007; 101: 973-979.

Przybytowski P, Wilczynska A. Honey as an environmental marker. Food Chem. 2001; 74:289–29.

Rubio C, Napoleone G, Luis-González G, Gutiérrez AJ, González-Weller D, Hardisson A, Revert C. Metals in edible seaweed. Chemosphere 2017; 173: 572-579.

Rubio C, Paz S, Ojeda I, Gutiérrez A.J, Dailos González-Weller, Hardisson, Revert C. Dietary Intake of Metals from Fresh Cage-Reared Hens’ Eggs in Tenerife, Canary Islands. J. Food Qual. 2017; DOI: 10.1155/2017/5972153.

Rubio C, Paz S, Tius E, Hardisson A, Gutiérrez AJ, González-Weller D, Caballero JM, Revert C. Metal Contents in the Most Widely Consumed Commercial Preparations of Four Different Medicinal Plants (Aloe, Senna, Ginseng, and Ginkgo) from Europe. Biol. Trace Elem. Res. 2018; DOI: 10.1007/s12011-018-1329-7.

Gonzalez-Weller D, Rubio C, Gutiérrez A.J, Pérez B, Hernández- Sánchez C, Caballero J.M, Revert C, Hardisson A. Dietary Content and Evaluation of Metals in Four Types of Tea (White, Black, Red and Green) Consumed by the Population of the Canary Islands. Pharm. Anal. Acta 2015; 6: 1-10.

IOM (Institute of Medicine). Food and Nutrition Board, Panel on Micronutrients. Arsenic, Boron, Nickel, Silicon, and Vanadium. In Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): National Academies Press (US); 2001.

Rubio C, Ojeda I, Gutiérrez AJ, Paz S, González-Weller D, Hardisson A (2018b) Exposure assessment of trace elements in fresh eggs from free- range and home-grown hens analysed by inductively coupled plasma optical emission spectrometry (ICP-OES). J Food Comp Anal 69: 45-52

Hardisson A, Revert C, González-Weller D, Gutiérrez A, Paz S, Rubio C. Aluminium Exposure Through the Diet. HSOA J. Food Sci. Nutr. 2017; 3: 1-10.

Rubio C, González-Iglesias T, Revert C, Reguera JI, Gutiérrez AJ, Hardisson A. Lead Dietary Intake in a Spanish Population (Canary Islands). J. Agric. Food Chem. 2005; 53: 6543-6549.

Sangiuliano D, Rubio C, Gutiérrez AJ, González-Weller D, Revert C, Hardisson A, Zanardi E, Paz S. Metal Concentrations in Samples of Frozen Cephalopods (Cuttlefish, Octopus, Squid, and Shortfin Squid): An Evaluation of Dietary Intake. J. Food Protect. 2017; 80(11): 1867-1871.

Luis G, Hernández C, Rubio C, González-Weller D, Gutiérrez AJ, Revert C, Hardisson A. Trace elements and toxic metals in intensively produced tomatoes (Lycopersicom esculentum). Nutr. Hosp. 2012; 27(5): 1605-1609.

IUPAC. International union of pure and applied chemistry, nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure Appl. Chem. 1995; 67:1699–1723.

Davis SM, Drake KD, Maier KJ. Toxicity of boron to the duckweed, Spirodella polyrrhiza. Chemosphere 2002; 48(6): 615-620.

CE (Comisión Europea). Reglamento (CE) No 1881/2006 de la Comisión de 19 de diciembre de 2006 por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios. Diario Oficial de la Unión Europea. 2006; L364/5.

Rashed MN, Soltan ME. (2004) Major and trace elements in different types of Egyptian mono-floral and non-floral bee honeys. J. Food Comp. Anal. 2004; 17:725–735.

Yilmaz H, Yavuz O. Content of some trace metals in honey from south-eastern Anatolia. Food Chem. 1999; 65:475–476.

WHO (World Health Organization). Guideline: Sugars intake for adults and children. World Health Organization, Geneva; 2015.

EFSA (European Food Safety Authority). Statement on the Evaluation on a New Study Related to the bioavailability of aluminum in food. EFSA J. 2011; 9(5): 2157.

EFSA. Panel on Contaminants in the Food Chain (CONTAM).

Statement on tolerable weekly intake for cadmium. EFSA J. 2011; 9(2): 1975.

WHO. Strontium and strontium compound. Concise International Chemical Assessment Document. 2010; 77: 1-63.

SCHER (Scientific Committee on Health and Environmental Risk). Assessment of the Tolerable Daily Intake of Barium. European Commission. 2012; DOI: 10.2772/49651

EFSA. Scientific opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J. 2015; 13(2): 4002- 4204.

AESAN. Informe del Comité Científico de la AESAN en relación a criterios de estimación de concentraciones para la discusión de propuestas de límites de migración de determinados metales pesados y otros elementos de objetos de cerámica destinados a entrar en cont. Rev. Com. Cient. 2012; 16: 11-20.

IOM (Institute of Medicine). Dietary Reference Intakes for Vitamin A,

Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Food and Nutrition Board, Institute of Medicine, National Academies. Washington, USA; 2001.

FESNAD (Federación Española de Sociedades de Nutrición, Alimentación y Dietética). Ingestas Dietéticas de Referencia (IDR) para la población española. Acta Diet. 2010; 14(4): 196-197.

AECOSAN (Agencia Española de Consumo, Seguridad Alimentaria y Nutrición). Modelo de dieta española para la determinación de la exposición del consumidor a sustancias químicas. Ministerio de Sanidad y Consumo, Madrid; 2006.

Archivos adicionales

Publicado

2018-07-31