Capacidad antibacteriana de fracciones peptídicas de frijol lima (Phaseolus lunatus L.) obtenidas por hidrólisis enzimática.

  • Carlos Gasca-Tuz Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.
  • Luis Chel-Guerrero Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.
  • David Betancur-Ancona Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.
Palabras clave: Frijol lima, Phaseolus lunatus, hidrólisis enzimática, capacidad antibacteriana.

Resumen

Objetivo. Evaluar la capacidad antibacteriana de fracciones peptídicas de frijol lima (Phaseolus lunatus) obtenidas por hidrólisis enzimática.

Métodos. Se procesaron granos de Phaseolus lunatus para obtener concentrados proteínicos, los cuales fueron sometidos a hidrólisis enzimática con las enzimas pepsina, FlavourzymeMR y el sistema secuencial pepsina-pancreatina. A los hidrolizados
obtenidos se les evaluó el grado de hidrólisis y los que presentaron un valor menor a 10% se les evaluó la capacidad antibacteriana contra Escherichia coli, Salmonella tiphimurium y Staphylococcus aureus.

Resultados. Los grados de hidrólisis más bajos que se obtuvieron fueron: 8.48, 9.58 y 7.40% para los sistemas enzimáticos pepsina, FlavourzymeMR y el sistema secuencial pepsina-pancreatina, respectivamente. Las fracciones peptídicas no presentaron una
capacidad antibacterial observable en forma de inhibición del crecimiento de las cepas.

Conclusión. Los hidrolizados proteínicos de Phaseolus lunatus, no presentaron capacidad antibacterial contra las cepas estudiadas.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Carlos Gasca-Tuz, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.
Profesor Investigador Titular C, Cuerpo Académco de Desarrollo  Alimentario
Luis Chel-Guerrero, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.
Estdiante de Posgrado en Ciencias Alimentarias
David Betancur-Ancona, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán.
Profesor Investigador Titular C, Cuerpo Académco de Desarrollo  Alimentario

Citas

Rodriguez D, Schöbitz R. Film antimicrobial bases whey protein, lactic acid bacteria incorporated as controller Listeria monocytogenes applied to smoked salmon. Fac. Cienc. Agrop. 2009; 7 (2):49-54.

Davison PM, Harrison MA. Resistence and adaptation to food antimicrobials, sanitizers and other. Food Technol. 2002; 56 (11):69-78.

Gutiérrez P, Orduz S. Péptidos antimicrobianos: estructura, función y aplicaciones. Act. Biol. 2003; 25 (78):5-15.

Mine Y, Shahidi F. Nutraceutical proteins and peptides in health and disease: An overview. En Nutraceutical Proteins and Peptides in Health and Disease; Mine, Y., Shahidi, F., Eds; Taylor & Francis group, 2006; pp. 4-25

Rydlo T, Miltz J, Mor A. Eukaryotic antimicrobial peptides: Promises and premises in food safety. J. Food Sci. 2006; 71 (9):125-135.

Imran M, Revol-Junelles A, René N, Jamshidian M, Akhtar MJ, Arab-Tehrany E, Jacquot M, Stéphane-Desobry S. Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocoll. 2012;29: 407-419.

Polanco E, Dávila-Ortiz G, Betancur-Ancona D, Chel-Guerrero L. Effects of sequential enzymatic hydrolisis on structural, bioactive and functional properties of Phaseolus lunatus protein isolate. Food Sci.Technol. 2014; 34 (3):441-448.

Córdova-Lizama A, Ruiz-Ruiz J, Segura-Campos M, Betancur-Ancona D, Chel-Guerrero L. Actividad antitrombótica y anticariogénica de hidrolizados proteínicos de frijol lima (Phaseolus lunatus). En pioactividad de péptidos derivados de proteínas alimentarias, Segura Campos, M., Betancur Ancona, D. Chel Guerrero, L. Eds.; Omnia Science, 2013; pp. 123-137.

Chel-Guerrero L, Pérez-Flores V, Betancur-Ancona D, Dávila-Ortiz G. Functional Properties of flours and protein isolates from Phaseolus lunatus and Canavalia ensiformis seeds, J. of Agric. Food Chem. 2002; 50: 584-591.

Association of Official Analytical Chemists (AOAC). (1997). Methods of analysis of association of official analytical chemists. 16 th Edition Washington, D.C.

Domínguez-Magaña M, Segura-Campos M, Dávila-Ortiz G, Betancur-Ancona D, Chel-Guerrero L. ACE-I inhibitory properties of hydrolysates from germinated and ungerminated Phaseolus lunatus proteins, Food Sci. Technol. 2015; 35 (1):167-174.

Pedroche J, Yust MM, Girón-Calle J, Alaiz M, Millán F, Vioque, J. Utilisation of Chickpea protein isolates for production of peptides with angiotensin- I converting enzyme (ACE)-inhibitory activity. J. Sci. Food Agric. 2002;82: 960-965.

Nielsen P, Petersen D, Dambmann C. Improved method for determining food protein degree of hydrolysis. J. Food Sci. Food Chem. Toxicol. 2001; 66 (5):642-646.

Lowry OH, Rosebrough NJ, Farr L, Randall RJ. Protein measurement with the folin phenol reagent. J. of Biol. Chem. 1951; 193:267-275

Chim-Chi Chim YA, Martínez AA, Chel-Guerrero L. Caracterización de hidrolizados de Jatropha curcas y Vigna unguiculata. EAE Editorial Academia Espanola, USA 2013

Corona A, Jiménez R. Comparación de dos métodos de siembra para el recuento de microorganismos en muestras con alta concentración microbiana. Rev. Fac. Ing. Quím. 2004; 40:3-7.

Montgomery, D. C. Diseño y análisis de experimentos. 2da Ed. Editorial Limusa. México, D. F. 2006.

Betancur-Ancona D, Martínez-Rosado R, Corona-Cruz A, Castellanos-Ruelas A, Jaramillo-Flores M, Chel-Guerrero L. Functional properties of hydrolysates from Phaseolus lunatus seeds. Int. J. Food Sci. Technol. 2009;44 (1): 128-137.

Benitez R, Ibarz A, Pagan J. Hidrolizados de proteína: Procesos y aplicaciones. Acta Bioq. Clin. Lat. 2008; 42(2):227-236.

Marrufo-Estrada DM, Segura-Campos MR, Chel-Guerrero LA., Betancur-Ancona DA. Defatted Jatropha curcas flour and protein isolate as materials for protein hydrolysates with biological activity. Food Chem. 2013; 138:77-83.

Corzo-Ríos L, Chel-Guerrero L, Betancur-Ancona D. Extracción de las fracciones de almidón y proteína del grano de la leguminosa Mucuna pruriens. Technol. Cienc. Educ. 2000; 15 (1):37-41.

Betancur-Ancona D, Gallegos-Tintore S, Chel-Guerrero, L. Wet-fractionation of Phaseolus lunatus seeds: partial characterization of starch and protein. J. Sci. Food Agric. 2004; 84: 1193-1201.

Tsumura K, Saito T, Tsuge K, Ashida H, Kugimiya W, Inouye K. Functional properties of soy hydrolysates obtained by selective proteolysis. LWT-Food Sci Tech. 2005: 38: 255-261.

Paraman I, Hettiarachchy NS, Schaefer C, Beck MI. Hydrophobicity, solubility and emulsifying properties of enzime-modified rice endosperm protein. Cereal Chem. 2007; 84(4): 343-349.

Megías C, Pedroche J, Yust MM, Alaiz M, Girón-Calle, J. Millán F, Vioque J. Sunflower protein hydrolysates reduce cholesterol micellar solubility. Plants Foods Hum. Nutr. 2009; 64: 86-93.

Picot L, Ravallec R, Fouchereu-Péron M, Vandanjon L, Jaouen P, Chaplain-Derouiniot M, Guérard F, Chabeaud A, LeGal Y, Martinez O, Bergé JP, Piot J, M., Batista I, Pires C, Thorkelsson G, Delannoy C,

Jakobsen G, Johansson I, Bourseau P. Impact of ultrafiltration and nanoiltration of an industrial fish protein hydrolysate on its bioactive properties. J. Sci. Food and Agric. 2010; 90 (11): 1819-1826

Sornwatana T, Roytrakul S, Wetprasit N, Ratanapo S. A new antimicrobial peptide from digestion of Brucea amarissima Desv fruit protein. 36th Congress on Science and Technology of Thailand. 2010; pp. 1-4.

Bojórquez-Balam E, Ruiz-Ruiz J, Segura-Campos M, Betancur-Ancona D, Chel-Guerrero L. Evaluación de la capacidad antimicrobiana de fracciones peptídicas de hidrolizados proteínicos de frijol lima (Phaseolus lunatus). M. Segura- Campos, L. Chel Guerrero, D. Betancur Ancona (Eds.), Bioactividad de péptidos derivados de proteínas alimentarias. Barcelona: OmniaScience. 2013; pp. 139-154.

Publicado
2016-10-08