Efecto de la fermentación y del tostado sobre el contenido de aminas biogénicas en semillas de cacao

Autores/as

  • José David Mejía-Reyes Instituto de Biociencias, Universidad Autónoma de Chiapas. Boulevard Príncipe Akishino sin número, Colonia Solidaridad 2000, CP. 30798, Tapachula, Chiapas
  • Rito Coronel-Niño Instituto de Biociencias, Universidad Autónoma de Chiapas. Boulevard Príncipe Akishino sin número, Colonia Solidaridad 2000, CP. 30798, Tapachula, Chiapas
  • Didiana Gálvez-López Instituto de Biociencias, Universidad Autónoma de Chiapas. Boulevard Príncipe Akishino sin número, Colonia Solidaridad 2000, CP. 30798, Tapachula, Chiapas
  • Raymundo Rosas-Quijano Instituto de Biociencias, Universidad Autónoma de Chiapas. Boulevard Príncipe Akishino sin número, Colonia Solidaridad 2000, CP. 30798, Tapachula, Chiapas
  • Alfredo Vázquez-Ovando Instituto de Biociencias, Universidad Autónoma de Chiapas. Boulevard Príncipe Akishino sin número, Colonia Solidaridad 2000, CP. 30798, Tapachula, Chiapas https://orcid.org/0000-0003-1397-3349

DOI:

https://doi.org/10.19230/jonnpr.2778

Palabras clave:

Tostado, amino oxidasas, levaduras, fermentación tradicional, granos sin fermentar

Resumen

Introducción. Las aminas biogénicas (AB) pueden encontrarse en alimentos sometidos a fermentación, en cantidades considerables pueden llegar a causar intoxicaciones al consumidor. 


Objetivo. Evaluar el efecto de la fermentación y el tostado sobre la producción-degradación de AB en semillas de cacao.


Métodos. En una primera etapa (E1), bajo un diseño completamente al azar se verificó el papel de la fermentación sobre las AB mediante cuatro tratamientos, inhibición del crecimiento de levaduras; inhibición del crecimiento bacteriano; fermentación tradicional y semillas sin fermentar. En  una segunda etapa (E2), con un diseño factorial 3X2 con medidas repetidas se evaluaron seis  tratamientos, resultado de la combinación de dos bacterias ácido lácticas (BAL) (L. plantarum, L.  fermentum, L. plantarum + L. fermentum) y dos concentraciones de cultivo iniciador (106 UFC/g, 108  UFC/g) para investigar el papel de BAL exógenas en la producción-supresión de AB.

Resultados. En la E1 se comprobó la presencia de tres AB de interés, encontrándose putrescina en mayor cantidad (37 – 45,2 ?g/g de semilla). Histamina y tiramina se encontraron en menores concentraciones sin efecto de la fermentación sobre la producción de AB. La E2 permitió  observar un efecto de las BAL en la producción de putrescina, alcanzando valores hasta 41,1 ?g/g  cuando se inoculó la concentración más alta de BAL durante la fermentación. Histamina se redujo en las  semillas después del tostado cuando se inoculó L. plantarum a 108 UFC/g.

Conclusión. Las BAL exógenas no tienen un papel fundamental en la producción-degradación de AB durante la fermentación de semillas de cacao.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Camu N, De Winter T, Takrama JS, Verbrugghe K, Vancanneyt M, Cleenwerck I, et al. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl. Environm. Microbiol. 2007; 73: 1809-1824.

Kadow D, Niemenak N, Rohn S, Lieberei R. Fermentation-like incubation of cocoa seeds (Theobroma cacao L.)- Reconstruction and guidance of the fermentation process. LWT - Food Sci. Technol. 2015; 62: 357-361.

Rodríguez-Campos J, Escalona-Buendía HB, Orozco-Ávila I, Lugo- Cervantes E, Jaramillo-Flores ME. Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Res. Int. 2011; 44: 250-258.

Jae-Hyung M. Fermented soybean foods: Significance of biogenic amines. Austin J. Nutr. Food Sci. 2015; 3: 1058.

Baranowska I, Plonka J. Simultaneous determination of biogenic amines and methylxanthines in foodstuff-sample preparation with HPLC- DAD-FL analysis. Food Anal. Methods 2015; 8: 963-972.

Flasarová R, Pachlová V, Buňková L, Menšíková A, Georgová N, Dráb V, et al. Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese. Food Chem. 2016; 194: 68-75.

Romano A, Klebanowski H, La Guerche S, Beneduce L, Spano G, Murat ML, et al. Determination of biogenic amines in wine by thin-layer chromatography/densitometry. Food Chem. 2012; 135: 1392-1396.

Lapa-Guimarães J, Pickova J. New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. J. Chromatogr. A. 2004; 1045: 223-232.

Restuccia D., Spizzirri U. G., Puoci F. & Picci N. 2015. Determination of biogenic amine profiles in conventional and organic cocoa-based products. Food Additives & Contaminants: Part A. 32(7): 1156-1163.

Alvarez M, Moreno-Arribas M. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci. Technol. 2014; 39: 146- 155.

Şanlibaba P, Uymaz B. Biogenic amine formation in fermented foods: cheese and wine. Eur. Int. J. Sci. Technol. 2015; 4: 81-92.

Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, et al. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 2010; 64: S95-S100.

Oracz J, Nebesny E. Influence of roasting conditions on the biogenic amine content in cocoa beans of different Theobroma cacao cultivars. Food Res. Int. 2014; 55: 1-10.

Lázaro CA, Conte-Júnior CA, Canto AC, Guerra MML, Costa-Lima B, Gomes DA, et al. Biogenic amines as bacterial quality indicators in different poultry meat species. LWT - Food Sci. Technol. 2015; 60: 15-21.

Loizzo MR, Menichini F, Picci N, Puoci F, Spizzirri UG, Restuccia D. Technological aspects and analytical determination of biogenic amines in cheese. Trends Food Sci. Technol. 2013; 30: 38-55.

Elsanhoty RM, Ramadan MF. Genetic screening of biogenic amines production capacity from some lactic acid bacteria strains. Food Control 2016; 68: 220-228.

Lorencová E, Buňková L, Matoulková D, Dráb V, Pleva P, Kubáň V, et al. Production of biogenic amines by lactic acid bacteria and bifidobacteria isolated from dairy products and beer. Int. J. Food Sci. Technol. 2012; 47: 2086-2091.

Callejón S, Sendra R, Ferrer S, Pardo I. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine. Appl. Microbiol. Biotechnol. 2014; 98: 185-198.

Capozzi V, Russo P, Laredo V, Fernandez M, Fiocco D, Alvarez AM, et al. Biogenic amines degradation by Lactobacillus plantarum: toward a potential application in wine. Front. Microbiol. 2012, 3: 122.

García-Ruiz A, González-Rompinelli EM, Bartolomé B, Moreno-Arribas MV. Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int. J. Food Microbiol. 2011; 148: 115-120.

Martins ACCL, Gloria MBA. Changes on the levels of serotonin precursors – tryptophan and 5-hydroxytryptophan – during roasting of Arabica and Robusta coffee. Food Chem. 2010; 118: 529-533.

Zamora R, Delgado RM, Hidalgo FJ. Formation of ß-phenylethylamine as a consequence of lipid oxidation. Food Res. Int. 2012; 46: 321-325.

Latorre-Moratalla ML, Bover-Cid S, Veciana-Nogués T, Vidal-Carou MC. Thin-layer chromatography for the identification and semi- quantification of biogenic amines produced by bacteria. J. Chromatogr. A. 2009; 1216: 4128-4132.

Bäumlisberger M, Moellecken U, König H, Claus H. The potential of the yeast Debaryomyces hansenii H525 to degrade biogenic amines in food. Microorganisms 2015; 3: 839-850.

García-Moruno E, Carrascosa AV, Muñoz R. A rapid and inexpensive method for the determination of biogenic amines from bacterial cultures by thin-layer chromatography. J. Food Prot. 2005; 68: 625-629.

Vázquez-Ovando A, Chacón-Martínez L, Betancur-Ancona D, Escalona-Buendía H, Salvador-Figueroa M. Sensory descriptors of cocoa beans from cultivated trees of Soconusco, Chiapas, Mexico. Food Sci. Technol. 2015; 35: 285-290.

Farah DMH, Zaibunnisa AH, Misnawi A. Optimization of cocoa beans roasting process using Response Surface Methodology based on concentration of pyrazine and acrylamide. Int. Food Res. J. 2012; 19: 1355-1359.

Spizzirri UG, Parisi OI, Picci N, Restuccia D. Application of LC with evaporative light scattering detector for biogenic amines determination in fair trade coco-based products. Food Anal. Methods. 2016; 9: 2200-2209.

Pugin B, Barcik W, Westermann P, Heider A, Wawrzyniak M, Hellings P, et al. A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microb. Ecol. Health Dis. 2017; 28: 1353881.

Schwan RF, Wheals AE. The microbiology of cocoa fermentation and its role in chocolate quality. Crit. Rev. Food Sci. Nutr. 2004; 44: 205-221.

Seguine E, Mills D, Marelli JP, Motamayor-Arias JC, Silva CIDA. Micro- Fermentation of cocoa. Patente Internacional No. WO2013025621A1. 2013.

Apriyanto M. Changes in chemical properties of dried cocoa (Theobroma cacao) beans during fermentation. Int. J. Fermented Foods 2016; 5: 11-16.

Horwitz W, Latimer GW. Official methods of analysis of AOAC international, 18th ed., 3rd rev. Gaithersburg, Maryland, USA. 2010.

Jeya SR, Vasundhara TS, Kumudavally KV. A comparison of the TLC- densitometry and HPLC method for the determination of biogenic amines in fish and fishery products. Food Chem. 2001; 75: 255-259.

Shakila RJ, Nasundhara TS, Kumudavally KV. A comparison of the TLC-densitometry and HPLC method for the determination of biogenic amines in fish and fishery products. Food Chem. 2001; 75: 255-259.

Luna F, Crouzillat D, Cirou L, Buchelli P. Chemical composition and flavor of Ecuatorian cocoa liquor. J. Agric. Food Chem. 2002; 50: 3527- 3532.

Afoakwa EO, Kongor JE, Takrama J, Budu AS. Changes in nib acidification and biochemical composition during fermentation of pulp pre- conditioned cocoa (Theobroma cacao) beans. Int. Food Res. J. 2013; 20: 1843-1853.

Hernández-Hernández C, López-Andrade PA, Ramírez-Guillermo MA, Guerra RD, Caballero PJF. Evaluation of different fermentation processes for use by small cocoa growers in Mexico. Food Sci. Nutr. 2016; 4: 690- 695.

Cros E, Jeanjean N. Cocoa quality: effect of fermentation and drying. Plantations, Recherche, Développement 1995; 24: 25-27.

Aprotosoaie AC, Luca SV, Miron A. Flavor chemistry of cocoa and cocoa products-an overview. Compr. Rev. Food Sci. Food Saf. 2016; 15: 73-91.

Afoakwa EO, Budu AS, Mensah-Brown H, Dan Felix J. Changes in biochemical and physico-chemical qualities during drying of pulp preconditioned and fermented cocoa (Theobroma cacao) beans. J. Nutr. Health Food Sci. 2014; 2: 1-8.

De Vuyst L, Weckx S. The cocoa bean fermentation process: from ecosystem analysis to starter culture development. J. Appl. Microbiol. 2016; 121: 5-17.

Dias EC, Pereira RG, Borém FM, Mendes E, de Lima RR, Fernandes JO, et al. Biogenic amine profile in unripe Arabica coffee beans processed according to dry and wet methods. J. Agric. Food Chem. 2012; 60: 4120- 4125.

Papageorgiou M, Lambropoulou D, Morrison C, Kłodzińska E, Namieśnik J, Płotka-Wasylka J. Literature update of analytical methods for biogenic amines determination in food and beverages. Trends Analyt. Chem. 2018; 98: 128-142.

EFSA. Panel on Biological Hazards (BIOHAZ); Scientific Opinion on Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011; 9: 2393.

Wu C, Zheng J, Huang J, Zhou R. Reduced nitrite and biogenic amine concentrations and improved flavor components of Chinese sauerkraut via co-culture of Lactobacillus plantarum and Zygosaccharomyces rouxii. Ann. Microbiol. 2013; 64: 847-857.

Dapkevicius MLNE, Nout MJR, Rombouts FM, Houben JH, Wymenga W. Biogenic amine formation and degradation by potential fish silage starter microorganisms. Int. J. Food Microbiol. 2000; 57: 107-114.

Kim NY, Ji GE. Characterization of the production of biogenic amines and gammaaminobutyric acid in the soybean pastes fermented by Aspergillus oryzae and Lactobacillus brevis. J Microbiol. Biotechnol. 2015; 25: 464-468.

Rohsius C, Matissek R, Lieberi R. Free amino acid amounts in raw cocoas from different origins. Eur. Food Res. Technol. 2006; 222: 432- 438.

Yoon SH, Kim MJ, Moon B. Various biogenic amines in Doenjang and changes in concentration depending on boiling and roasting. Appl. Biol. Chem. 2017; 60: 273-279.

Amorim HV, Basso LC, Crocomo OJ, Teixeira AA. Polyamines in green and roasted coffee. J. Agric. Food Chem. 1977; 25: 957-958.

Oliveira SD, Franca AS, Gloria MBA, Borges MLA. The effect of roasting on the presence of bioactive amines in coffees of different qualities. Food Chem. 2005; 90: 287-291.

Publicado

2018-11-04