• abolghasem shameli


In order to search for the interaction between Melphalane and nanotbe boron nitride is investigated using density functional theory (DFT). The structures of individual counterparts and hybrids have been optimized and the molecular properties have been evaluated. The Density of States (DOS) Plots, nuclear quadrupole resonance (NQR) analysisand nuclear magnetic resonance spectroscopy (NMR) are witness to the substantial changes in the electronic properties of pristine Nanotubes boron nitride systems following the attachment of the melphalane with the nanotubes surface.


La descarga de datos todavía no está disponible.


Asai, M., Ohba, T., Iwanaga, T., Kanoh, H., Endo, M., Campos-Delgado, J., & Kaneko, K. (2011). Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O. Journal of the American Chemical Society, 133(38), 14880-14883.

Collins, P. G., Bradley, K., Ishigami, M., & Zettl, A. (2000). Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 287(5459), 1801-1804.

Drago, R. S. (1992). Physical Methods for Chemists Saunders. Orlano, FL.

Ferreira, V. A., & Alves, H. L. (2008). Boron phosphide as the buffer-layer for the epitaxial III-nitride growth: a theoretical study. Journal of Crystal Growth, 310(17), 3973-3978.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Dapprich, S. (1998). Gaussian 98, revision a. 7, Gaussian. Inc., Pittsburgh, PA, 12.

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58.

Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., & Dai, H. (2000). Nanotube molecular wires as chemical sensors. Science, 287(5453), 622-625.

Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., & Meyyappan, M. (2003). Carbon nanotube sensors for gas and organic vapor detection. Nano letters, 3(7), 929-933.

McNally, T., Pötschke, P., Halley, P., Murphy, M., Martin, D., Bell, S. E., & Quinn, J. P. (2005). Polyethylene multiwalled carbon nanotube composites. Polymer, 46(19), 8222-8232.

Mirzaei, M. (2011). Carbon doped boron phosphide nanotubes: a computational study. Journal of molecular modeling, 17(1), 89-96.

Mirzaei, M., & Hadipour, N. L. (2008). A computational NQR study on the hydrogen‐bonded lattice of cytosine‐5‐acetic acid. Journal of computational chemistry, 29(5), 832-838.

Mirzaei, M., & Yousefi, M. (2013). Modified (n, 0) BN nanotubes (n= 3–10) by acetic acids: DFT studies. Superlattices and Microstructures, 55, 1-7.

Mirzaei, M., Yousefi, M., & Meskinfam, M. (2012). Studying (n, 0) and (m, m) GaP nanotubes (n= 3–10 and m= 2–6) through DFT calculations of Ga-69 quadrupole coupling constants. Solid State Sciences, 14(7), 801-804.

Mokhtari, A., Harismah, K., & Mirzaei, M. (2015). Covalent addition of chitosan to graphene sheets: Density functional theory explorations of quadrupole coupling constants. Superlattices and Microstructures, 88, 56-61.

Moscatello, J. P., Wang, J., Ulmen, B., Kayastha, V. K., Xie, M., Mensah, S. L., & Yap, Y. K. (2007). Growth of carbon, boron nitride and ZnO nanotubes for biosensors. ECS Transactions, 3(26), 1-13.

Oberlin, A., Endo, M., & Koyama, T. (1976). Filamentous growth of carbon through benzene decomposition. Journal of crystal growth, 32(3), 335-349.

Pyykkö, P. (2001). Spectroscopic nuclear quadrupole moments. Molecular Physics, 99(19), 1617-1629.

Shameli, A., Balali, E., Khadivei, R., & Shojaei, S. (2016). Computational studies of formation silicon nanotubes-propylthiouracil hybrids to investigate its role in confining propylthiouracil drug. Oriental Journal of Chemistry, 32(1), 291-294.